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(a) Scenario of traffic encounter. (b) Microphone array for localisation. (c) Visualisation of out-of-view vehicle.

Figure 1: The proposed ARcoustic system. The system supports pedestrians in everyday traffic encounters, helping them to
avoid potential collisions with other vehicles (a). It utilises a microphone array to localise nearby out-of-view vehicles (b). The
localised nearby vehicles are then visualised using a novel visualisation technique (c). Best seen in colour.

ABSTRACT
Locating out-of-view vehicles can help pedestrians to avoid critical
traffic encounters. Some previous approaches focused solely on
visualising out-of-view objects, neglecting their localisation and
limitations. Other methods rely on continuous camera-based locali-
sation, raising privacy concerns. Hence, we propose the ARcoustic
system, which utilises a microphone array for nearby moving ve-
hicle localisation and visualises nearby out-of-view vehicles to
support pedestrians. First, we present the implementation of our
sonic-based localisation and discuss the current technical limita-
tions. Next, we present a user study (𝑛 = 18) in which we compared
two state-of-the-art visualisation techniques (Radar3D, Compass-
bAR) to a baseline without any visualisation. Results show that
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both techniques present too much information, resulting in below-
average user experience and longer response times. Therefore, we
introduce a novel visualisation technique that aligns with the tech-
nical localisation limitations and meets pedestrians’ preferences for
effective visualisation, as demonstrated in the second user study
(𝑛 = 16). Lastly, we conduct a small field study (𝑛 = 8) testing our
ARcoustic system under realistic conditions. Our work shows that
out-of-view object visualisations must align with the underlying
localisation technology and fit the concrete application scenario.
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1 INTRODUCTION
Awareness of objects in the environment is important for everyday
life. Lack of information about the locations of surrounding objects
may lead to severe consequences. A prominent example of this is
overlooking other road users when navigating traffic, which can
result in collisions. A previous study found that more than half of
drivers do not look before turning, which highlights the elevated
risk of collisions [37]. Since pedestrians are usually more at risk in
such situations, they are commonly referred to as vulnerable road
users [51]. Consequently, pedestrians need to be on high alert when
navigating traffic to avoid close encounters with vehicles. In this
paper, we introduce the ARcoustic system, which is designed to help
pedestrians in critical traffic encounters by visually highlighting
moving vehicles.

A natural way for humans to perceive objects in their surround-
ing environment is their peripheral vision. However, the human
field of view is restricted to about 180 degrees horizontally and 90
degrees vertically [50]. This means that objects outside the field
of view cannot be perceived visually. In addition, being distracted
(e.g. by a smartphone [52]) further amplifies the problem of not
perceiving relevant objects, which ultimately increases the risk
of an accident [66]. Besides visual perception, our ability to hear
relevant objects approaching can be impacted as well. For example,
people with hearing impairment cannot perceive all acoustic envi-
ronmental noises; thus, they rely more on their visual perception.
Another problem is that pedestrians often wear headphones while
navigating traffic, which may prevent them from hearing important
sounds (e.g. a car honking) [67].

While researchers have proposed various methods to visualise
potential risks for pedestrians in traffic (e.g. [29]), the detection
connected to these risks (e.g. a nearby vehicle) is often assumed
to exist. Thus, no consideration is given to technical limitations
resulting from tracking (e.g. tracking inaccuracies). If tracking so-
lutions are proposed, they focus on very specific scenarios, such
as a vehicle approaching from behind while a user plays an Aug-
mented Reality (AR) game [34] or encountering fixed obstacles on
the sidewalk [53, 71]. Current solutions to track nearby vehicles
mostly rely on optical sensors [1, 35]. However, cameras in public
spaces are perceived as invasive of privacy [13, 39]. Despite being a
promising alternative, sonic-based tracking has not been frequently
researched in the traffic context. Furthermore, on the visualisation
side, previous work has primarily investigated the visualisation of
static out-of-view objects [7, 42], neglecting moving objects. Out-
of-view objects moving adds another dimension, increasing the
overall complexity of the problem [25]. The degree to which exist-
ing solutions scale towards these problems with greater complexity
remains unclear. It is likely that the additional complexity results
in a greater mental load, making such solutions difficult to use in
everyday situations [25]. Finally, it is unclear what information
pedestrians actually need to navigate traffic safely.

The primary research objective of this work is to develop a sonic-
based solution for the detection of out-of-view traffic in pedestrian
environments. Meanwhile, this work aims to explore the potential
applicability of existing out-of-view visualisation techniques in
conveying this pertinent information to users. In the event that the

existing techniques are unsuitable, we design and develop a new
visualisation technique to address this requirement.

In our paper, we propose the ARcoustic system. It utilises a 360-
degree microphone array and a machine-learning approach to track
nearby vehicles, estimating their directions and distances relative
to the user. The vehicles detected as out-of-view are then visualised
for the user to increase their situational awareness. In the early
design stage, we employed Virtual Reality (VR) as a test bed. To
understand how to visualise the out-of-view road users that are
potentially relevant, we first compared different visualisation tech-
niques (𝑛 = 18) from previous work (i.e. CompassbAR and Radar3D).
As our findings showed that these techniques present too much
information to the user, we then designed a novel visualisation
technique that takes into account both the user’s mental require-
ments and the technical limitations of our tracking approach. We
continued with a second lab study in which we investigated our
ARcoustic system (𝑛 = 16) and a field study (𝑛 = 8) in which we
tested the system under realistic conditions.

Contributions. The contributions of our paper are constructive
and empirical: 1) We contribute theARcoustic system, which detects
and visualises out-of-view moving vehicles with great accuracy. 2)
We present two lab studies conducted in VR and use them to com-
pare existing out-of-view object visualisation techniques, finding
that existing techniques are not well-suited to the task. We then
compare our ARcoustic to no visualisation, showing that it reduces
task load. 3) We perform a field study in which we test the system
under realistic conditions using AR glasses.

2 RELATEDWORK
In the following, we take a closer look at the related work that
informed the design of our ARcoustic system.

2.1 Locating Objects in Outdoor Environments
Commonly used technologies for locating and tracking objects are
inertial-, optical-, and sonic-based tracking. While inertial-based
tracking is limited to relative movements and needs to be applied to
the tracked object itself [74], optical- and sonic-based tracking ap-
pear more feasible for tracking nearby road users. Their advantage
is that they enable tracking from the user’s position without the
need for communication with the tracked road users (e.g. to com-
municate locations tracked individually by GPS). Optical tracking
is often implemented using an RGB camera in combination with a
tracking algorithm (e.g. YOLO [59], which allows real-time track-
ing from individual picture frames). In previous work, researchers
have applied optical tracking in traffic for collision avoidance with
fixed structures [36] and nearby vehicles [34]. Here, one camera is
sufficient for position estimation [1], and capturing multiple frames
allows estimation of velocity [35]. However, optical tracking is per-
ceived as privacy-invasive by bystanders; hence, it is less feasible
for public contexts [13, 39]. A possible solution to privacy-invasive
optical tracking can be sonic-based tracking. In previous work,
researchers have deployed microphones to monitor traffic [45].
While a microphone could capture sensitive information or iden-
tify people [12], doing so would require bystanders to speak in
close proximity to it, making it a good alternative to a continuously
recording camera [46]. In our work, we track nearby vehicles using
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a microphone array; thereby, we estimate their locations relative to
the user.

Researchers have explored the use of microphone arrays for
estimating the positions of vehicles in outdoor environments. Ap-
proaches include passive acoustic perception using time-difference-
of-arrival (TDOA) techniques, as proposed by Schulz et al. [63], and
active acoustic perception using emitted sound waves and mea-
sured echoes [33]. More recently, data-driven approaches have also
been proposed for object detection and tracking using multichannel
acoustic signals. Gan et al. proposed a self-supervised system to
track moving vehicles using stereo sound [21]. Valverde et al. went
further by incorporating a microphone array for estimating vehi-
cle positions in outdoor environments, as well as using depth and
thermal imaging in addition to RGB for training their system [69].
These papers collectively demonstrate the potential of microphone
arrays for vehicle position estimation in outdoor environments.
Hence, we follow this approach in our work.

2.2 Visual Guidance in Traffic
To help people navigate everyday traffic, researchers have proposed
various approaches that either help road users find a target (i.e. nav-
igation) or avoid a target (i.e. collision avoidance). For navigation,
previous work has investigated navigation with AR to a single tar-
get (e.g. finding the correct bus stop among many others [49]) or
to multiple targets (e.g. showing multiple points of interest during
sightseeing [62]). Nevertheless, in traffic encounters, road users
often face situations in which they need to avoid a target instead
of navigating toward it. Here, researchers focused on car drivers
and either provided them with a visualisation of surrounding ob-
jects [27] or directly guided their attention to critical objects [14].
For autonomous vehicles, previous work has also proposed the
use of external interfaces on the vehicles to reassure pedestrians
that they have not been overlooked [9, 15, 16]. However, only a
few papers have investigated systems that can directly support
pedestrians in avoiding collisions. For example, Wang et al. pro-
posed a pedestrian safety app for mobile phone users who walk
and talk while crossing roads [71]. Moreover, Gruenefeld et al. sug-
gested peripheral LEDs to shift the attention of smartphone users
to potential traffic collisions [27]. While these systems can support
pedestrians in avoiding collisions, they put a stronger emphasis
on users distracted by their smartphones. More importantly, they
directly shift the attention of users to hazardous objects, which
means that they must be able to tell which objects are actually
hazardous. Since they are not yet able to do so, they either shift
the user’s attention too frequently or they miss relevant objects
(with potentially fatal consequences). Therefore, in our work, we
want to visualise relevant objects outside the user’s field of view
and empower the user to identify hazardous objects on their own
(similar to [34]).

2.3 Visualising Moving Out-of-View Objects
One obvious solution to empower humans to see out-of-view ob-
jects is to extend their vision to 360 degrees, removing the limit
of the human field of view (e.g. by using 360-degree cameras [41]).
However, researchers have shown that this leads to disorientation
and can overstimulate the human brain [41]. Thus, previous work

has initially focused on encoding only the directions toward out-of-
view objects. A common approach uses LEDs mounted on glasses to
encode direction [29, 47, 55]. This idea has also been explored with
VR glasses [28, 75]. As most of the LED-based approaches distribute
the LEDs around the user’s eyes, they do not directly encode the
direction of the object; instead, they encode the direction of the
head movement necessary to bring the object into view. However,
as most relevant objects in a traffic scenario are placed on a 2D
ground plane, only LEDs on the left and right sides of the eyes can
be used to encode out-of-view objects. Thus, multiple objects are
more difficult to encode and tend to overlap with each other (similar
to the corner-density problem of off-screen visualisation techniques
such as Halo [5]). A better approach to encode direction is to use
on-screen AR visualisations [18, 23]. For example, Gruenefeld et al.
transferred well-known off-screen visualisation techniques such
as Halo and Wedge to AR [23]. However, the large visual cues are
difficult to show on small-screen devices. CompassbAR overcomes
this limitation by using a 2D bar positioned at the top of the screen,
where each position on the 2D bar encodes a direction (from left
-180 degrees to right 180 degrees) [18].

For our work, we selected CompassbAR to encode the locations
of relevant out-of-view road users. Besides direction, there are vi-
sualisation techniques that encode not only directions but also
distances to out-of-view objects [7, 24–26, 42]. For example, Eye-
See360 uses a radar-like visualisation in which every point encodes
a direction and the color of every point encodes distance [24]. Pre-
vious work has compared EyeSee360 to non-visual approaches and
found that it results in faster search times than audio and haptic
cues [42]. Moreover, others have compared EyeSee360 to Radar3D,
an alternative radar-like visualisation that encodes direction and
distance together. It was found that the cognitive load is higher
for Radar3D [30], while both techniques perform equally well in
terms of several other metrics (e.g. search time) [7]. Nevertheless,
it should be noted that most of these studies involved out-of-view
objects in static positions. When using moving objects, Gruenefeld
et al. found that Radar3D actually results in better performance
and understanding of object movement [25]. Thus, for our work,
we selected Radar3D as the second visualisation technique to be
tested for visualising out-of-view objects in our traffic context.

3 GENERAL APPROACH
In this paper, we propose the ARcoustic system, which allows both
the localisation of nearbymoving vehicles and their visualisation on
AR glasses. The system aims to support pedestrians during critical
traffic encounters in which a nearby vehicle approaches outside
the pedestrian’s field of view, potentially resulting in a collision. So
far, a few papers have investigated solutions outside the lab that
explore localisation and visualisation together (e.g. [34]). However,
each localisation technology introduces technical limitations that
need to be considered when designing the visualisation technique.
Furthermore, traffic encounters are rather complex situations that
involve several moving objects and require decisions to be made
quickly, while previous work has primarily investigated support
for static objects (e.g. [25]).

To design our ARcoustic system, we followed user-centred de-
sign (UCD) principles [22], enabling us to iteratively improve our
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design. The UCD process initiates with a concept derived from an
understanding of the usage context; followed by the development
of one or more prototypes, which undergo iterative refinement
through successive evaluations [6]. Moreover, in the early design
stages (first and second study), we employed VR as a test bed to
examine the design concept [78]. Rebelo et al. argued that VR en-
ables one to develop realistic virtual environments that come with
greater control of the experimental conditions compared to a lab
setting [58]. In addition, VR enables researchers to evaluate systems
in different contexts [2, 65], including hard-to-replicate or even dan-
gerous contexts, such as pedestrian safety [11, 64]. As illustrated
in Figure 2, we first developed a localisation system that utilises a
6-channel microphone array with Raspberry Pi. The device is worn
on the user’s head, as detailed in Section 4. Then, we compared
existing visualisation techniques for displaying out-of-view objects
in a lab study (𝑛 = 18; see Section 5). As we found that existing
techniques do not work well in our selected traffic scenario, we
designed a novel visualisation technique (see Section 6). Thereafter,
we conducted two user studies: a lab study (𝑛 = 16) to demonstrate
the usefulness of our novel visualisation technique (see Section 7)
and a field study (𝑛 = 8) to test the ARcoustic system under realistic
conditions (see Section 8).

Function Implementation

Interface Design

Lab Study I (VR): Comparing Existing Out-of-View Visualisation Techniques

Lab Study II (VR): Evaluating ARcoustic System in Simulated Urban Traffic

Prototype Testing

6-Microphone Array + Raspberry Pi 4 Signal processing + Machine Learning+

Field Study (AR): Testing ARcoustic System

+

-90-120 18090 120-180 -150 150
vs vs

vs

Figure 2: Simplified development process schematic.

4 LOCALISING OBJECTS WITH A
MICROPHONE ARRAY

In recent years, sound source localisation has been extensively used
as a standard tool for localising sound sources in various applica-
tions, including robotics [68], surveillance [61], hearing aids [73]
and smart home systems [3]. The primary goal of this process is to
determine the location of a sound source, such as a moving vehicle
on the road, in real-time and in real-world environments, based
on measurements acquired from an array of microphones. The

challenges in achieving this objective include dealing with envi-
ronmental noise, reflections, and varying distances between the
sound source and the microphone array [61]. Previous studies have
demonstrated that by leveraging microphone arrays, it is possible
to develop advanced systems that can accurately identify and locate
various sound sources, even under such challenging conditions.

4.1 Concept and Implementation
To address the challenges of real-time sound source localisation
and object classification, this work proposes a tailored system that
integrates a compact and cost-effective hardware setup with signal
processing and machine learning algorithms. The hardware setup,
comprising a Raspberry Pi 4 and a ReSpeaker 6-Mic Circular Array
kit [60], forms a lightweight and affordable platform with limited
computational power, that is suitable for practical deployment. The
ReSpeaker 6-Mic Circular Array kit is an extension board for Rasp-
berry Pi. It contains a circular microphone array with six individual
microphones to capture multichannel audio signals.

As illustrated in Figure 3, we employ a hybrid approach that com-
bines delay and sum beamforming with a Multi-Layer Perceptron
(MLP) neural network. Beamforming is a widely used technique
in which the parameters of each element in a phased array are
adjusted to enhance signals coming from specific angles while sup-
pressing signals from other angles. This enables the output signal
to be steered towards a desired direction, effectively forming a
‘beam’ [10]. In this work, we use the frequency domain delay and
sum beamforming method in the preprocessing stage, a popular
foundation for many advanced algorithms [44]. The preprocessing
involves transforming multichannel raw signals into the frequency
domain using Fast Fourier Transform (FFT) with a sampling rate of
16 𝑘𝐻𝑧 and an FFT length of 2048. This results in a frame of sound
with a duration of 128 𝑚𝑠 . The frequency range of 1.5 𝑘𝐻𝑧 to 4
𝑘𝐻𝑧 is then selected, as it captures the air-pumping noise from the
tire-road noise [77], which is suitable for detecting both Internal
Combustion Engine (ICE) vehicles and Electrical Vehicles (EV) and
provides an acceptable lobe width given the array geometry. Beam-
forming computes every 10 degrees from 0 to 360 degrees, resulting
in 36 directions. Each direction contains 384 FFT bins, which make
one frame with 384 data points. These points are normalised by
their mean value.

In addition to the beamforming technique, MLP plays a crucial
role in the proposed system by performing sound event classifica-
tion. In this work, the MLP architecture is designed with a hier-
archical structure consisting of an input layer with 384 neurons,
followed by three hidden layers containing 240, 120, and 60 neu-
rons, respectively, and finally an output layer with two neurons.
This configuration takes the 384 FFT bins of the 1.5 𝑘𝐻𝑧 to 4 𝑘𝐻𝑧
input frequency range from the output of the beamforming process
and classifies the measured noise from a certain direction into two
classes: car and other.

In order to further refine the classification results, a cascade
threshold is introduced based on the empirical observation of the
mean energy values of the detected sound sources. Specifically,
when the output class is identified as a car, the system examines the
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Subband 
Selection

MLP 
Classifier

Class2 Other
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Microphone 
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FFT Beamforming
Threshold

critical

non-critical

Figure 3: Schematic representation of the overall system

mean energy value of the signal. This threshold, set at 1.0, corre-
sponds to the mean energy value observed for a car located approx-
imately 40𝑚 away. This cascade threshold is grounded through Fu
et al.’s pedestrian safety model [19]. The threshold value originates
from the braking distance equation, which considers a 50 𝑘𝑚/ℎ test
scenario, a maximum reaction time of two seconds, and a friction
coefficient of 0.8 for a dry asphalt road. The pedestrian safety dis-
tance is determined to be 40𝑚, on which the cascade threshold is
based, allowing the system to differentiate between near and far
cars and categorise car noise as safety critical or non-critical.

4.2 Data Collection and Training
The data collection process was carried out in a real-world environ-
ment in order to capture audio recordings representative of various
acoustic scenarios. The dataset consists of two distinct classes: car
and other. The car class includes sound recordings of vehicles driv-
ing at approximately 50 𝑘𝑚/ℎ, as well as those with lower speeds
when cars stopped at traffic lights. The other class contains au-
dio samples of human voices, ventilation noise from indoor office
spaces, and outdoor noise in the absence of cars.

To collect the audio data, the researchers positioned themselves
near a road where cars travelled at various speeds, including the
target speed of 50 𝑘𝑚/ℎ. The recordings were initiated manually
upon visual identification of an approaching car and terminated
once the car was no longer audible. This method, although intuitive
and flexible, may introduce some inaccuracies due to its reliance
on human judgement and timing. Nevertheless, we believe that the
collected dataset provides a reasonably accurate representation of
the two designated classes for the purposes of training the MLP
neural network. In total, the dataset comprises approximately 10
minutes of car recordings and 20 minutes of other recordings.

For preprocessing, the Welch method with a Hanning window
and 50% overlap was applied to the multi-channel data to compute
spectrograms [72]. Then, beamforming was applied to obtain 36-
direction signals. For the car class, the top six directions with the
highest mean energy were assumed to be within the lobe. For the
other class, the top three directions were considered sufficient due
to the lower level of activity. This procedure resulted in a dataset
comprising 50𝑘 frames for each class.

Once the data were preprocessed, they were stratified and parti-
tioned into training, validation, and test sets, with proportions of
70%, 20%, and 10%, respectively. The training process leveraged the
previously introduced MLP neural network. The model was trained
using the Generalised Cross-Entropy Loss as the loss function, with
an initial learning rate of 0.01 and a weight decay of 1e-5, for a total
of 100 epochs.

4.3 Technical Evaluation
The MLP model’s performance was evaluated after 100 epochs, as
summarised in Table 1. The test F1 score achieved by the model
was 0.7806, suggesting that the model’s performance is satisfactory,
though not optimal. The precision and recall values offer further
insight into the performance of the model. In the other class, the
precision and recall are 0.80 and 0.73, respectively, indicating that
the model is more adept at identifying non-car sounds, albeit with
some misclassification as car sounds. Conversely, the precision is
0.77 and the recall is 0.83 for the car class, indicating that the model
is better at identifying car sounds but might classify some non-car
sounds as cars.

Table 1: Classification performance of the MLP model

Class Precision Recall F1 score Support
Car 0.77 0.83 0.80 5260
Other 0.80 0.73 0.76 4789

5 LAB STUDY I: COMPARING EXISTING
OUT-OF-VIEW VISUALISATION
TECHNIQUES

In the following, we report on our first user study in which we com-
pare existing out-of-view visualisation techniques for our explored
traffic scenario.

5.1 Study Design
To compare the different visualisation techniques for out-of-view
objects, we conducted a within-subjects controlled laboratory study
in VR with the Meta Quest 2. Our independent variable was the
localisation technique with three levels (Baseline [no visualisation]
vs. Radar3D [25] vs. CompassbAR [18]; see Figure 4).

The 180-degree rear view is divided into seven directions in
both systems, each spaced 30 degrees apart and capable of de-
tecting the closest car within its range. The systems distinguish
between two levels of proximity: critical (less than 40m) and non-
critical (between 40m and 80m). CompassbAR employs a half linear
compass bar to display out-of-view vehicle information, with non-
critical level cars appearing smaller and critical cars appearing
larger. Radar3D utilises blue and yellow dots to indicate the posi-
tion of the nearest car in each direction. A yellow dot on the inner
ring indicates critical proximity, while a blue dot on the outer ring
signifies non-critical proximity. According to the original design,
the CompassbAR is attached to the top of the field of view (FoV),
while the Radar3D is placed in the middle of the FoV.

Each technique was tested in a block consisting of four measured
trials with the participants crossing the road in each trial, resulting
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-90-120 18090 120-180 -150 150

(a) CompassbAR. (b) Radar3D.

Figure 4: Existing out-of-view visualisation techniques we used in Study 1. (Note: The figure background is grey here for clarity,
but it is transparent in the studies.)

in a total of 216 trials (3 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 × 4 𝑡𝑟𝑖𝑎𝑙𝑠 × 18 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠).
All blocks, each consisting of one technique, were counterbalanced
using a Latin-square design. We used quantitative methods to eval-
uate user performance. We included time to cross (TTC) as well
as subjective measures such as task load (NASA Raw-TLX [31]),
user experience (short User Experience Questionnaire [UEQ] [40]),
usability (System Usability Scale [SUS] [8]), and individual Likert-
items as our dependent variables. For this study, we asked: (RQ)
To what extent can existing out-of-view visualisation tech-
niques (CompassbAR, Radar3D) support users in crossing
scenarios compared to no visualisation?

𝐻1 For the time to completion, we expect the Baseline condition
to result in short times because we hypothesise that the
existing out-of-view visualisation techniques contain too
much information.

𝐻2 For the same reason, we expect the Baseline condition to
result in a lower task load.

5.2 Demographics
A total of 18 volunteers (nine female, nine male) with an average
age of 26.17 years (𝑆𝐷 = 2.94 years) were recruited for the study
through internal mailing lists, word-of-mouth and social media.
The study was conducted in our 5.5m × 9m VR Lab and was ap-
proved by the Ethical Review Board of the institution. Only two
participants had no prior experience with VR. There were no colour-
blind volunteers. Eleven participants reported having used head-
phones/earphones while crossing the street, while all participants
reported having observed others using headphones/earphones cross-
ing the road.

5.3 Apparatus
This VR project was implemented with Unity 3D (2021.3.16f1). A
mesh collider was used to detect the position and distance of each
vehicle. We updated the visual information every 0.3 seconds to
simulate the physical prototype performance. There is no auditory
feedback in the simulation to emulate the use of headphones in a
real-world scenario.

5.4 Procedure
The procedure for the study began with obtaining informed con-
sent from each participant and having them fill out a demographic
questionnaire. Participants were then briefly informed about the
procedure and asked to put on a headset. They were given the
opportunity to become familiar with the first user interface before
being asked to navigate to six different points, making four times

safe crossings with the help of the visualisation (if exists). They
walked a straight line distance of 6.30m each time. Once the task
was completed, participants were asked to remove the headset and
fill out the UEQ (CompassbAR, Radar3D only), SUS (CompassbAR,
Radar3D only), NASA Raw-TLX and custom questionnaires. The
same task was then repeated using the other two conditions. Fi-
nally, an interview was conducted with each participant to gather
information on their preferences and overall experience with the
two visualisations. The order in which the participants tested the
user interfaces was counterbalanced.

5.5 Results
Time to Cross. For all conditions, participants were asked to cross
the road four times. Here, we used the median time of all four
crossings. The median (inter-quartile range) times to cross for each
condition are (in ascending order): Baseline = 7.10 𝑠 (𝐼𝑄𝑅 = 5.17 𝑠),
Radar3D = 9.29 𝑠 (𝐼𝑄𝑅 = 4.49 𝑠), and CompassbAR = 11.14 𝑠 (𝐼𝑄𝑅 =

5.91 𝑠). All times are compared in Figure 5a. A Shapiro-Wilk Test
showed that the data is not normally distributed (𝑝 < 0.001), so
we applied non-parametric tests. A posthoc test using Wilcoxon
Signed-rank with Bonferroni-Holm correction showed significant
differences between Baseline and Radar3D (𝑊 = 17, 𝑍 = −2.44,
𝑝 = 0.037, 𝑟 = 0.41). We can conclude that participants were signifi-
cantly faster in the Baseline condition than with Radar3D.

Task Load. For all three conditions, participants were asked to
answer the NASA Raw-TLX, for which a lower score indicates a
lower task load. The scores are compared in Figure 5b. The median
scores are 26.67 (𝐼𝑄𝑅 = 20.00) for Baseline, 25.00 (𝐼𝑄𝑅 = 16.04) for
Radar3D, and 30.83 (𝐼𝑄𝑅 = 27.08) for CompassbAR. A Friedman test
did not reveal any significant differences (𝜒2 (2) = 4.33, 𝑝 = 0.115,
𝑁 = 18).

Usability. To assess the usability of both visualisations, we asked
participants to complete the SUS. All scores are compared in Fig-
ure 5c. The median scores are 60.00 (𝐼𝑄𝑅 = 23.75) for Radar3D and
55.00 (𝐼𝑄𝑅 = 21.88) for CompassbAR, indicating below average but
okay usability [4].

User Experience. For both conditions with visualisation, we
asked participants to fill out the short UEQ. For pragmatic qual-
ity, the median scores are 0.75 (𝐼𝑄𝑅 = 1.69) for Radar3D and 0.50
(𝐼𝑄𝑅 = 1.69) for CompassbAR. For hedonic quality, the median
scores are 0.88 (𝐼𝑄𝑅 = 1.38) for Radar3D and 1.38 (𝐼𝑄𝑅 = 1.62)
for CompassbAR. Overall, the user experience was rated with 0.69
(𝐼𝑄𝑅 = 1.44) for Radar3D and 0.75 (𝐼𝑄𝑅 = 1.38) forCompassbAR. Ac-
cording to Laugwitz et al. [40], the responses for both visualisations
indicate below-average user experience. A Wilcoxon signed-rank
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Figure 5: Results from the first user study in which existing out-of-view visualisation techniques (CompassbAR, Radar3D) are
compared to a baseline without any visualisation support. In subfigure (c), we compare the usability across Studies 1 and 2.

test did not reveal a significant difference between the conditions
(𝑊 = 63, 𝑍 = −0.64, 𝑝 = 0.538).

Individual Likert-Items. After each condition, we presented
participantswith various statements and asked them to rate them on
a 5-point Likert scale (1=strongly disagree, 3=neutral, 5=strongly
agree). The first statement was Q1: ‘I felt safe during the condi-
tion.’ Overall, participants agreed for Baseline and Radar3D (𝑀𝑑 =

4, 𝐼𝑄𝑅 = 1), while they were neutral for CompassbAR (𝑀𝑑 =

2.5, 𝐼𝑄𝑅 = 2). The second statement was Q2: ‘I felt the overview
of the traffic is good.’ Here, participants agreed for Baseline (𝑀𝑑 = 4,
𝐼𝑄𝑅 = 1.75), Radar3D (𝑀𝑑 = 4, 𝐼𝑄𝑅 = 2), and CompassbAR (𝑀𝑑 =

4, 𝐼𝑄𝑅 = 1). Friedman tests did not reveal any significant differences
(Q1: 𝜒2 (2) = 2.05, 𝑝 = 0.358, 𝑁 = 18; Q2:𝜒2 (2) = 1.42, 𝑝 = 0.491,
𝑁 = 18).

Qualitative Feedback. In the semi-structured interview, ten
participants preferred the Radar3D, as this visualisation is easy to
understand and effective at offering a traffic overview, while eight
preferred the CompassbAR, as it is reminiscent of games. Seven
participants stated that they interpreted the information from Com-
passbAR as left and right, enabling them to make quick decisions.
Overall, participants wished for a larger field of view (FoV) and
suggested that the system should only display information that
requires immediate attention instead of also presenting non-critical
traffic information.

6 DESIGNING THE ARCOUSTIC
VISUALISATION TECHNIQUE

To enhance the visualisation of out-of-view information, we in-
corporated the participants’ feedback in the design process. Our
goal was to minimise the user’s workload in acquiring informa-
tion, leading to the development of the new ARcoustic visualisation
shown in Figure 9. We expanded the out-of-view range to include
the left front and right front, each at a 45-degree angle, while the
three quarter-turns represent the user’s left, back, and right sides,
respectively. ARcoustic is specifically designed to display only the
most critical direction to the user at any given moment, reducing
information overload and improving the user’s ability to process
important information.

(a) Example: non-critical car
on the left side of the user.

(b) Example: critical car on the
left side of the user.

Figure 6: Simple schematic demonstrating different states of
the ARcoustic visualisation

We used red in the visualisation to indicate approaching cars.
We chose this colour because red is associated with concepts such
as potential hazard and danger [48, 56]; thus, it communicates that
the user should treat the nearby moving car as such. While green
is associated with it being ‘safe’ to cross, we opted not to use it
according to knowledge from information visualisation that indi-
cated it could lower the usability of the system for colour-blind
users [43]. Rather, we opted to use different saturation levels of red:
0 saturation for no car, 0.5 for a non-critical car (Figure 6a) and 1
for a car that is critical (Figure 6b).

7 LAB STUDY II: EVALUATING ARCOUSTIC IN
SIMULATED URBAN TRAFFIC

We report on our second user study in which we evaluated the new
out-of-view ARcoustic visualisation technique. We used the same
apparatus as in the first study (Section 5).

7.1 Study Design
We designed and conducted a within-subjects user study. We aimed
to investigate whether the presence of a visualisation system en-
hances the quality of decision-making compared to a condition
where no such system is present. Our independent variable was the
localisation technique with two levels (Baseline [no visualisation]
vs. ARcoustic).
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Each technique was tested in a block consisting of 12 measured
trials. In each trial, participants were asked to make a decision
about whether it was safe to cross the road. Overall, we had 384
trials (2 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 × 12 𝑡𝑟𝑖𝑎𝑙𝑠 × 16 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠). We used quanti-
tative methods to evaluate user performance. We took the number
of safe crossing decisions as well as subjective measures such as
confidence in the decision, task load (NASA Raw-TLX), user ex-
perience (short UEQ), usability (SUS), and individual Likert-items
as our dependent variables. For this study, we asked: (RQ) Can
the new visualisation technique (ARcoustic) support users
in crossing scenarios compared to no visualisation?

𝐻3 We expect the ARcoustic condition to result in more correct
decisions because we hypothesise that the new out-of-view
visualisation technique will help users to detect dangers
quickly and easily.

𝐻4 For the same reason, we expect the ARcoustic condition to
result in a reduced task load.

7.2 Demographics
Sixteen new volunteers (four female, 12 male) with an average age
of 28.38 years (SD = 3.03 years) were recruited in this study. Of these,
five had no prior experience with VR. The recruitment procedures
were consistent with those of the first study (Section 5). Overall, 15
participants used headphones/earphones while crossing the street,
and 12 used smartphones/smartwatches while doing so. All partici-
pants reported having seen others using headphones/earphones or
smartphones/smartwatches when crossing the road. None of the
participants had colour blindness.

7.3 Procedure
After giving informed consent and filling out a demographic ques-
tionnaire, participants were briefly informed about the procedure
and asked to put on a headset. They first familiarised themselves
with the VR visualisation system as well as the messages they could
receive during the observation. During the study, participants were
informed that there are different traffic situations and were tasked
with observing them on the roadside from the beginning. Between
the 3 and 8-second intervals, messages were displayed in front of
the users. After an additional 1.5 seconds of observation, they were
required to make a decision regarding the safety of crossing the
road and to reply to a question about the message that they had
previously received. Then they observed the traffic situations once
with the visualisation and once without in a counterbalanced order.
There are 12 different traffic situations, in which car movements
and states vary. These include left or right-hand drive in one or two
directions as well as scenarios with parked cars that may or may
not be movable.

Once the task was completed, participants were asked to remove
the headset and fill out the UEQ (ARcoustic only), SUS (ARcoustic
only), NASA-TLX and custom questionnaires. The same task was
then repeated with another condition. Finally, we interviewed each
participant to gather information on their opinion of and overall
experience with the new user interface. The order in which the
participant tested the user interfaces was counterbalanced.

7.4 Results
Decision to Cross. For each condition, we conducted 12 trials.
Within each trial, we first exposed participants to a traffic situation
and then asked them if they thought it was safe to cross the road and
how confident they were in their answers (5-point Likert scale). If
they answered with the wrong decision, we inverted the confidence
score, using it as a negative value. Thereafter, we calculated the
weighted decisions from the mean of all confidence scores for that
condition. The mean (IQR) weighted decisions are 1.25 (𝐼𝑄𝑅 =

3.67) for Baseline and 1.29 (𝐼𝑄𝑅 = 3.65) for ARcoustic. A Wilcoxon
test did not reveal a significant difference between the conditions
(𝑊 = 58, 𝑍 = 0.35, 𝑝 = 0.749). In terms of the number of correct
decisions, when traffic conditions were unsafe, participants using
ARcoustic made more correct decisions (𝑀𝐸𝐴𝑁 = 5.09, 𝑆𝐷 = 1.87)
(not crossing the road) than those using Baseline (𝑀𝐸𝐴𝑁 = 4.18,
𝑆𝐷 = 2.32), as tested by a Wilcoxon test (𝑊 = 2.5, 𝑍 = −1.98,
𝑝 = 0.047).

Task Load. For both conditions, participants were asked to
answer the NASA Raw-TLX. The resulting score for ARcoustic
(𝑀𝑑 = 47.50, 𝐼𝑄𝑅 = 13.75) is significantly lower than for the
Baseline condition without a visualisation (𝑀𝑑 = 63.33, 𝐼𝑄𝑅 =

12.29) (𝑊 = 97.5, 𝑍 = 2.13, 𝑝 = 0.032, 𝑟 = 0.38).
Usability. To assess the usability of ARcoustic, we asked par-

ticipants to complete the SUS after using ARcoustic. The median
resulting score is 76.25 (𝐼𝑄𝑅 = 24.38), which indicates good usabil-
ity according to Bangor et al. [4].

User Experience. We asked participants to fill out the short
UEQ after using ARcoustic. For pragmatic quality, participants rated
ARcoustic with a median score of 1.63 (𝐼𝑄𝑅 = 1.94) for pragmatic
quality; and a median score of 1.50 (𝐼𝑄𝑅 = 2.06) for hedonic quality.
Overall, the user experience was rated with a median score of 1.31
(𝐼𝑄𝑅 = 1.34). According to Laugwitz et al. [40], the participants’
responses for ARcoustic indicate good user experience.

Individual Likert-Items. After each condition, we presented
participants with two statements and asked them to rate them on a
5-point Likert scale , as in the first Study (Section 5). The responses
can be seen in Figure 8. Overall, participants agreed with the first
statement for ARcoustic (𝑀𝑑 = 4.0, 𝐼𝑄𝑅 = 0.5), while they were
neutral for Baseline (𝑀𝑑 = 3.0, 𝐼𝑄𝑅 = 2.0). A Wilcoxon signed-rank
test revealed a significant difference between the conditions with a
medium effect size (𝑊 = 6, 𝑍 = −2.44, 𝑝 = 0.016, 𝑟 = 0.43). We can
conclude that participants felt significantly safer in the ARcoustic
condition than in the Baseline. Participants were neutral with the
second statement for the Baseline condition (𝑀𝑑 = 3.0, 𝐼𝑄𝑅 = 2.0),
while they agreed for theARcoustic condition (𝑀𝑑 = 4.0, 𝐼𝑄𝑅 = 2.0);
however, the difference between the conditions is not significant
(𝑊 = 13.5, 𝑍 = −1.75, 𝑝 = 0.094).

Qualitative Feedback. Overall, the participants described AR-
coustic as having a simple and intuitive user interface that is easy
to understand (as mentioned by nine participants). With ARcoustic,
users feel safer and are able to obtain a brief summary of their
surroundings even when they are focused on a secondary task.
This increased awareness can provide users with more confidence
when making decisions and help them to rotate their heads less
frequently. Four participants expressed a particular liking for the
use of red in the middle of FoV to indicate danger, while others

185



ARcoustic: A Mobile Augmented Reality System for Seeing Out-of-View Traffic AutomotiveUI ’23, September 18–22, 2023, Ingolstadt, Germany

−5.0

−2.5

0.0

2.5

5.0

Baseline ARcoustic

W
ei

gh
te

d 
Sc

or
e

Comparison of Weighted Decisions

(a) Weighted decision to cross.

*

0

25

50

75

100

Baseline ARcoustic

Ta
sk

 L
oa

d

Comparison of Task Load

(b) NASA Raw-TLX.

−2

0

2

Radar3D CompassbAR ARcoustic

O
ve

ra
ll 

Sc
or

e

User Experience

Lab Study I Lab Study II

(c) UEQ across lab studies.

Figure 7: Results from the second lab study in which the novel ARcoustic visualisation is compared to the baseline without
visualisation. In subfigure (c), we plot the user experience across the first and second studies.
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Figure 8: After each condition, participants were asked to rate two statements on a 5-point Likert scale.

felt that the visual feedback could be distracting and suggested
incorporating peripheral indicators. Furthermore, five participants
expressed the desire to receive information about the movement
direction of cars in their vicinity, in addition to simply being alerted
to their presence.

8 FIELD STUDY OF THE ARCOUSTIC SYSTEM
To validate the feasibility of the ARcoustic system, we conducted
a field study and asked participants to wear it mounted on their
heads. The system was implemented using Unity 3D (2021.3.2f1)
with the Mixed Reality Toolkit package. A HoloLens 2 was used to
project information to the user. A Raspberry Pi 4 was connected
to a mobile hot spot to transmit the data via TCP/IP socket and
was powered by an additional power bank, as shown in Figure 9a.
To correctly display the colour with the desired visual effect, we
adjusted it manually.

Participants. Eight new volunteers (three female, five male)
with an average age of 26 years (𝑆𝐷 = 2.51 years) participated
in this field study. Everyone had had experience with mixed real-
ity. One participant had never used headphones/earphones or a
smartphone/smartwatch while crossing the road. All participants
had observed others using them while crossing. None of them are
colour-blind. The recruitment procedures were consistent with
those of the first study (Section 5). The study was carried out on
the side of Celestijnenlaan in Leuven, Belgium.

Procedure. After obtaining consent and collecting demographic
information, we directed the participants to the starting point on

the pavement. They were then instructed to proceed slowly along
the 100m pavement towards a bus stop, a journey that typically
takes around two minutes. Participants then crossed a bike lane and
remained at the bus station for a minimum of three minutes while
at least five cars passed by. Subsequently, participants returned to
the starting point. Throughout the study, we used the Think-Aloud
Protocol, which required participants to verbalise their thoughts
and observations continuously [17]. At the end of the study, par-
ticipants were asked to complete the UEQ, NASA Raw-TLX, and a
custom questionnaire, followed by a semi-structured interview.

Results. Participants evaluated the system as positive (overall
score of 1.23) with the UEQ questionnaire. In general, observing
the traffic with ARcoustic has a medium task load (𝑀𝐸𝐴𝑁 = 23.54,
𝑆𝐷 = 9.76). Participants’ feedback regarding the visualisation in
this study was consistent with that of the second study. They found
the interface to be easy, simple, and intuitive, allowing them to
quickly identify the directions of moving vehicles. Additionally,
participants noted that the ARcoustic device was lighter and more
portable than they had anticipated. They also expressed confidence
in the system’s accuracy, as they were able to observe that the
corresponding quadrant changed colour when a car passed by.
However, it is important to note that the colour red may not always
be easily seen in bright outdoor environments, which could impact
the system’s sensitivity for some users. The participants expressed
distinct preferences regarding how the information pertaining to
their position should be updated. One participant preferred that
out-of-view information be updated based on eye movement, while
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(a) Hardware setting of ARcoustic.

(b) The view with the HoloLens 2.

Figure 9: Hardware setting and the screenshot of ARcoustic
on the HoloLens 2. (Note: black will appear as transparent in
b).

the other participants preferred that the information be based on
body position rather than head movement. In terms of hardware
performance, we noticed that strong winds tend to cause false
positive non-critical occurrences.

9 GENERAL DISCUSSION
In this section, we discuss the result we obtain from the technical
evaluation and the three studies we conducted.

Object Localisation. From a technical evaluation perspective,
the relatively high F1 score for the car class suggests that the model
is well-suited for safety-critical applications, as it can effectively
distinguish between car and non-car sounds. Still, there is poten-
tial for enhancing the model’s performance. Future work could
investigate more advanced models, such as 1D CNNs [38] or Trans-
formers [70], to improve performance. Considering hardware con-
straints and real-time processing requirements, the current MLP
model is deemed adequate. The processing time for a single frame,
including beamforming and classification across 36 directions, is 50
ms on a Raspberry Pi 4 using a single CPU thread, which enables the
implementation of real-time applications. Moreover, future research
could explore more fine-grained labelling or employ self-supervised
techniques such as cross-modality training [21, 69]. Utilising such
techniques could potentially leverage the co-occurrence of visual
and audio streams in unlabelled videos, without the need to collect
ground truth annotations.

Existing Out-of-View Visualisations. The result partially sup-
ported 𝐻1 and 𝐻2. Existing out-of-view visualisation techniques
(CompassbAR, Radar3D) are not perfectly suitable for supporting

users in crossing scenarios compared to no visualisation. This was
mainly due to information overload and user distrust of the system.

Information Overload. While most participants acknowledged
the usefulness of the system in certain situations, they also noted
that the existing out-of-view visualisations provide an overwhelm-
ing amount of information. Both systems we tested require time
to learn and interpret data, which is a critical issue when cross-
ing a road. Participants who are familiar with shooting games are
accustomed to the CompassbAR. Other participants may require
more time to learn how to map the linear compass bar to the world
coordinate system. Consequently, many users would opt not to
use the system in these situations. In general, detailed information
for all detected cars is not necessary for this scenario. Too much
out-of-view information can distract users and interrupt their focus.
While the interruptions serve to alert users, they also increase the
TCC, since users check the alert information and then return to
what they were focusing on before.

User Distrust of the System. Despite the system’s ability to ac-
curately compute and display real-time information, users often
encounter a discrepancy when attempting to locate a car’s current
position. As pedestrians, participants perceived the car to bemoving
at a relatively high speed. However, by the time they checked, the
car may have moved from its previously displayed location, erod-
ing user trust in the system. Furthermore, based on the hardware
performance of the Raspberry Pi 4, it is currently only possible
to present a moving car as a discrete dot without a continuous
display. Continuous tracking visualisation of the same vehicle is
not feasible with the current technological implementation, which
differs from existing optical tracking systems used in autonomous
driving (e.g. overlaying graphics and data onto a live video feed
from the vehicle’s cameras). This is not the same as they experi-
enced or expected, which further decreases the system’s usability.
As a result, participants did not fully trust the system. However,
the ability to track a car is not an essential function of our system.

ARcoustic Visualisation. The new ARcoustic visualisation is
rated as having good usability as well as good user experience
with improved and simplified visualisation. The results partially
supported 𝐻3. A technical limitation of the current system is that
it only provides the direction of the moving car and does not in-
dicate whether the car is approaching or moving away from the
user. In the following four street conditions, participants may mis-
understand the indication, since a leaving car can also trigger a
danger indicator: 1) left-steering vehicles approaching each other, 2)
right-steering vehicles approaching each other, and 3-4) previously
stopped vehicles, both left-steering or right-steering, moving in
opposite directions. Moreover, unlike in the first study, participants
did not have enough time to observe the traffic after reading the
received message or map. We observed that participants employed
different strategies when the system detected a critical level of dan-
ger: those who exhibited trust in the system promptly refrained
from crossing upon receiving a danger message, while those who
preferred to verify the system’s information before making a deci-
sion chose not to cross until they had turned their head to check
for danger. In such cases, they rated their decisions with low confi-
dence. This behaviour is in line with daily experience, as rotating
one’s head to check for traffic before crossing without a traffic
signal is common [57]. In the field study, participants expressed
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fewer concerns about understanding the moving direction of the
car. Traffic flow in real-world conditions is less intense than in
the virtual environment, allowing participants to better assess the
safety of their surroundings.

The result from the user study supports 𝐻4. ARcoustic sum-
marises the out-of-view information so that users can perceive
potential dangers directly. By incorporating an additional danger
detector, users experienced a significant increase in their sense of
safety compared to the baseline. ARcoustic reduces task load by
providing information in the middle of the user’s FoV, so it can be
quickly and easily perceived with just a glance. This eliminates the
need for users to rotate their heads to check their surroundings, en-
abling them to identify potential dangers more efficiently. However,
due to the high difficulty level of the tasks themselves, the NASA
Raw-TLX values for ARcoustic are still classified as somewhat high.

During the field study, participants reported difficulty in per-
ceiving colours with high levels of brightness outdoors. To address
this issue, we recommend that future systems enable the AR device
to detect ambient brightness and automatically adjust the bright-
ness of the AR projection and the colours accordingly to improve
visibility and user experience.

Using VR to Design AR Systems in the early design stage.
VR offers a controlled and secure test bed for the evaluation of poten-
tially hazardous scenarios [2, 58, 65]. In our study, we employed VR
to simulate an AR system within a virtual urban environment fea-
turing traffic. Through the implementation of experiments within
the VR environment, we were able to directly introduce users to
the system concept, gather their feedback, and promptly refine the
design, ultimately resulting in the development of an improved
visualisation. Notably, during the real-world AR field study, users
provided feedback that closely aligned with the observations made
in the VR simulation. While VR studies provide a valuable represen-
tation of the acoustic interface, it is crucial to acknowledge certain
limitations inherent to this approach.

As we transitioned this system from VR to real-world AR, we
noted that the colour patterns designed for VR could not be directly
applied to AR. Consequently, we adjusted the colour and depth
of the UI manually. It is worth emphasising that various factors,
including the surrounding environment [20, 32] and display tech-
nology [76], can cause VR and AR to present the same colour with
varying visual effects. Moreover, due to differences in depth per-
ception between AR and VR [54], it is necessary to reevaluate the
desired depth of the user interface to ensure optimal usability and
user experience.

Limitations. We used sonic-based technology in our system,
which is capable of detecting the sound of a moving vehicle behind
a blind corner [63]. However, we did not evaluate such scenarios in
the VR study and field tests.

10 CONCLUSION AND IMPLICATIONS
In this work, we proposed the ARcoustic system, which offers a
solution for visualising out-of-view information for pedestrians.
The proposed system employs a machine learning-based approach
and utilises a Raspberry Pi 4 and a ReSpeaker 6-Mic Circular Ar-
ray kit for localisation. The traffic information is projected onto a
HoloLens 2, and the visualisation is first designed in virtual reality

and then tested in real-world settings. The findings of this study
demonstrate that this new visualisation technique effectively re-
duces information overload, assists users in identifying potential
hazards with ease and efficiency, and facilitates accurate decision-
making in unsafe situations. The participants’ feedback also reveals
a favourable attitude towards the system.
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