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ARm Haptics: 3D-Printed Wearable Haptics for Mobile Augmented Reality

ANONYMOUS AUTHOR(S)

Fig. 1. We present the ARm Haptics system, which builds upon 3D-printed wearable input modules to provide haptics for Augmented
Reality experiences. Left: 3D-printed mount for input modules. Center: ARm Haptics system with two mounted input modules.
Right: Button in Augmented Reality linked to worn input module (full blue bar indicates successful linking).

Augmented Reality (AR) technology enables users to superpose virtual content onto their environments. However, interacting with
virtual content while mobile often requires users to perform interactions in mid-air, resulting in a lack of haptic feedback. Hence, in
this work, we present the ARm Haptics system, which is worn on the user’s forearm and provides 3D-printed input modules, each
representing well-known interaction components such as buttons, sliders, and rotary knobs. These modules can be changed quickly,
thus allowing users to adapt them to their current use case. After an iterative development of our system, which involved a focus group
with HCI researchers, we conducted a user study to compare the ARm Haptics system to hand-tracking-based interaction in mid-air
(baseline). Our findings show that using our system results in significantly lower error rates for slider and rotary input. Moreover,
use of the ARm Haptics system results in significantly higher pragmatic quality and lower effort, frustration, and physical demand.
Following our findings, we discuss opportunities for haptics worn on the forearm.

CCS Concepts: • Human-centered computing → Mixed / augmented reality; Haptic devices.
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1 INTRODUCTION

With Augmented Reality (AR) technology, users can enrich their perception of reality with superposed virtual con-
tent [4]. From simple visual guidance [16] to spatially distributed interaction [35], AR content can manifest in different
forms. In recent decades, researchers have demonstrated the potential of AR applications in various contexts, such as
education [26], traffic [45], and assembly [24]. When AR is experienced in a head-mounted device (HMD), users are
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free to move around and use their hands to interact with the physical environment. Interaction with entirely virtual AR
content not present in the physical environment, however, remains challenging [50].

One central element that can significantly enhance virtual environments is haptic feedback through “haptic devices”
or “haptic props” [25]. Haptic feedback that is emitted by a device or prop can either be of “active” or “passive” nature [29].
Lindeman et al. define passive haptic devices as “physical objects which provide feedback to the user simply by their
shape, texture or other inherent properties” [29]. They stand in contrast to “active-haptic feedback systems” which are
controlled by a computer instead [29]. Passive haptic devices are in general associated with a number of benefits such
as being “familiar” to manipulate and “obvious to use” [22], yet they are rarely deployed in realistic settings nowadays.

The current trend towards hand-tracking input in AR headsets (cf. Microsoft Hololens 2 or Magic Leap) amplifies
the problem of missing haptic sensations because there is no haptic feedback when interacting in mid-air. This lack of
haptics leads to reduced immersion and degraded interaction [13]. In addition, it has been shown that the presence of
haptic feedback can have a positive effect on task completion time, error rate, and learning curve [7]. Without additional
hardware, hand-tracking input can only provide haptic feedback when using one’s own body [33] or additional objects
in the environment [20, 21, 41]. Nevertheless, the physical properties that can be “simulated” by these approaches are
limited by the properties of the available objects.

Hence, previous work has suggested various approaches to providing haptic feedback in AR using additional hardware.
These approaches include, for example, controller-based [47], pen-based [46], and fingertip-based systems [44], which to
some extent hinder interaction with real-world objects. Furthermore, the aim of these systems is to provide a universal
solution that can communicate the haptic properties of many different objects. As a consequence, specific physical
objects are not as well represented because their physical properties are only approximated. A different approach is to
represent specific but frequently used objects as haptic props (for example, interface components such as sliders and
rotary knobs [11]). So far, previous work investigated haptic props present in the environment, however, making them
wearable is an approach towards providing haptic feedback while mobile and leaving users’ hands free.

This work presents ARm Haptics, an approach to providing passive haptic feedback via a wearable system worn on
the user’s forearm using 3D printed input modules. We developed ARm Haptics based on findings from a focus group
with HCI researchers and following an iterative development process. Furthermore, we motivate the selection of an
initial set of interface components, namely buttons, sliders, and rotary knobs from our focus group findings as well.
The ARm Haptics system consists of 3D printed input modules that can be worn on the forearm and synced with an
Augmented Reality interface. For configuring the system, users can freely choose a set of input modules that fits their
needs. Here, the idea behind these modules is not to provide haptic feedback for all interactions but only those that
gain a clear benefit (e.g., higher input precision). Changing modules mid-usage is possible; however, not the focus of
our explorations. We validated ARm Haptics with a user study (𝑁 = 12) in which we compared it to hand-tracking
based interaction mid-air without haptic feedback (as supported by current AR headsets such as the Microsoft Hololens
2). We used quantitative methods to evaluate user performance and conducted semi-structured interviews with all
participants. While our findings show that hand-tracking input is faster for button input, we found that participants
made fewer errors with sliders and rotary knobs when using our system. Furthermore, participants gave our ARm
Haptics system a higher rating for user experience and a lower rating for perceived task load. We conclude our work
with application opportunities for haptics worn on the user’s forearm.

Contribution Statement. We contribute a system for mobile AR that is worn on the forearm and provides haptics
for frequently used interaction components such as buttons, sliders, and rotary knobs. The system and its components
are 3D-printed, which allows users to quickly produce and change components as needed. We publish the system and
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its artifacts, including detailed instructions for replicating it and creating new modules, under an open source license.
Moreover, we contribute empirical results from a comparative user study that highlights the benefits and drawbacks of
our ARm Haptics system.

2 RELATEDWORK

In the following, we discuss the related work for our ARm Haptics system, provide reasons for our taken technical
approach, and present the design decisions derived from previous findings.

Haptics in Virtual Reality. Creating believable haptic experiences is a relevant problem beyond Augmented Reality
technology. Virtual Reality (VR) in particular has received significant attention because it lacks the presence of physical
objects. Here, researchers have proposed various approaches for integrating haptics in VR. One approach is to use
turkers (i.e., bystanders that help create the haptic experiences) to generate motion [9], rearrange larger objects such as
walls and doors [10], or reconfigure and actuate otherwise passive haptic props [8]. Another approach is to use robots
to create haptic experiences (for example, with stationary robot arms [1] or actuated mobile robots [19]). In more recent
work, researchers also investigated the use of drones flying around the user to provide haptics [2, 23]. An example of
this is Flyables, which uses 3D-printed user interface components mounted to quadcopters that fly to specific locations
to offer haptics for their virtual counterparts [2]. However, it remains a challenge to use these approaches in AR as, in
this case, users still perceive their physical environment (i.e., users would see the humans and robots used to create the
haptics). While previous work explored how haptic devices can be hidden from AR users [12], the suggested approaches
create a visual mismatch between perceived and real space, resulting in users colliding with these devices. Hence, in the
following, we focus on approaches that are more readily applicable to AR.

Tangibles and Haptic Props. Enriching existing physical objects with AR content allows us to introduce the versatility
of AR technology to tangible objects [17]. For example, AR technology can be used to introduce more detail to 3D-printed
objects [34]. Moreover, interactions with tangible objects can enhance task performance (e.g., via more precise input
[11]), increase learning [39], and feel more natural [37]. However, AR interfaces are not often shaped around existing
physical objects, but instead rely on additional virtual objects that lack a physical manifestation. As it is impractical to
3D print every virtual object, researchers have explored alternative approaches. One proposed approach is to leverage
available physical objects in the environment to provide natural affordances [20] or substitute physical objects with
virtual counterparts [21, 41]. While this approach is promising, the physical properties that can be presented to a user
are largely determined by the user’s environment. Another approach is to (re)use physical objects to represent (different)
virtual ones [3, 22]. An example is Embodied Axes, which provides users with sliders and rotary knobs that can be used
to control a 3D data space in AR [11]. Using physical interaction components was found to be more accurate overall
than conventional tracked controllers. Still, the haptic devices are placed in the environment and therefore limit users’
mobility. In contrast, the ARm Haptics system makes use of a wearable form factor which leverages input accuracy
while allowing for mobility at the same time. Thus, we look into portable and wearable haptics in the next paragraph.

Portable and Wearable Haptics. Controllers for interacting with virtual content in AR as well as VR have been around
for quite some time. Hence, it makes sense to not only use them to track users’ hands, but also to provide haptic feedback.
Researchers have proposed various ways to extend the functionality of controllers towards improved haptic feedback
(for example, to feel different surfaces [6], textures [43, 47], shapes [15], or weights [49] of objects). Moreover, others
have investigated controllers that resemble physical tools well known to users, such as pens [46]. Nevertheless, as these
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Fig. 2. Two sketches from two different participants of the focus group. Left: showing an apparatus that extends over the finger tips
and which can be used for haptic input; Right: haptic input elements are strapped to the back of the hand and the lower arm.

are hand-worn controllers, they make it harder for users to continue interacting with their real-world environment.
Additionally, we can observe a trend towards hand-tracking input for AR headsets (cf. Microsoft Hololens 21 or Magic
Leap2), which enables users to interact more naturally by using their fingers and hands. As an alternative approach to
controllers, researchers have also proposed various haptic devices that attach to the user’s fingertips [40, 42, 44, 48],
with some requiring a stationary or mobile device as a counterpart [27, 30]. Recently, Teng et al. suggested a device
that can fold away to keep users’ fingertips free in order to ensure unhindered interaction with real-world objects [44].
Another approach to provide haptics is to let users use their own body to see [33] and feel AR content [14]. However,
most presented approaches aim to be universal solutions that communicate the haptic properties of many different
objects while, to some degree, neglecting the realistic representation of specific ones. Hence, in our work, we focus on
representing specific objects that are frequently used (i.e., interaction components such as buttons or sliders), similar to
previous work (e.g., [11]). In addition, we make them wearable on the user’s arm so that they do not hinder interaction
with the physical environment but still stay with the user as they move around. Furthermore, we ensure that the objects
are 3D-printable and quickly changeable, so that the resulting system remains flexible.

3 DESIGNINGWEARABLE MODULAR HAPTICS

Striking a balance between accurate input with haptic feedback, flexibility in interface design and user mobility requires a
wearable solution. Thus, we aimed for a modular wearable solution that embodies frequently used interface components
as conveniently interchangeable props for haptic feedback. First, to identify which interface components should be
initially provided and to come up with early ideas of how the modular haptic system could look, we conducted a focus
group. After that, we continued on the early ideas with an iterative design process that at its end resulted in our final
ARm Haptics system.

3.1 Focus Group

The focus group was conducted over the internet using an online whiteboard tool and synchronous audio and video
communication. We invited a total of 5 participants (2f, 3m, 0d) with an average age of 30 years (SD=2 years). All
participants were employed as researchers in different groups focusing on Human-Computer Interaction (HCI), all
participants were PhD students with backgrounds in haptics and user experience. All participants stated that they had
between two and four years of experience in their fields.

In the beginning of the focus group, we introduced them to the topic and presented themwith an official demonstration
video of the hand-tracking-based interaction of the Microsoft Hololens 23. In the video, the presenter demonstrates how
to interact with interface components such as buttons or sliders. As these interactions take place in mid-air, no haptic

1Microsoft Hololens 2. https://www.microsoft.com/en-us/hololens, last retrieved May 18, 2022.
2Magic Leap. https://www.magicleap.com, last retrieved May 18, 2022.
3Demonstration of the Hololens 2. https://www.youtube.com/watch?v=uIHPPtPBgHk, last retrieved May 18, 2022.
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feedback is present. Following the video, we communicated that the goal of the focus group was to offer wearable
haptics for interface components that provide an alternative to mid-air interactions in Augmented Reality. Thereafter,
we started the first discussion among participants, which was on the topic of user interface components. Participants
were asked to consider on their own which user interface components would benefit from haptics. They were given
three minutes to do this, during which time they created notes for their ideas in the digital whiteboard tool. As a result,
we obtained a ranking of the user interface components that would benefit the most from haptics. Here, our participants
listed the following three components as most relevant (in descending order): rotary knobs, buttons/checkboxes, and
sliders (participants grouped buttons and checkboxes).

The second and last discussion among participants was on the topic of designing a wearable system to enable haptics
in AR. We asked participants to think of a solution and to draw a sketch of their wearable prototype that is attached
to the human lower arm and hand. We provided a corresponding template to the participants to draw upon. Selected
sketches from the focus group are provided in raw (see Figure 2) and simplified form (see Figure 3). Most sketches
located the haptics device on the user’s forearm using a flexible, strap-based mounting system (cf., Figure 2), more
specifically on the wrist (similar to wearing a watch). Furthermore, participants envisioned different approaches for
presenting the various interface components. Some imagined an automatic mechanism that would switch between
the different interface components (cf., Figure 2 – left), while one participant suggested that users could simply rotate
their arm to access the different components (see Figure 3 – bottom left). In the following discussion, the need for
interchangeability of the different user interface components was specifically mentioned, as it was considered that
embedding too many components into one design might clutter it. Two designs reflected this in using exchangeable
plates that embed the user interface component (cf., Figure 2), while the designs by three participants in total were
using straps to attach the prototype to the arm. The discussion within the focus group yielded the result that straps
provided the necessary flexibility and adaptability of mounting a prototype on the human arm; particularly if the arms
can be individual in terms of size and extent.

Following the group’s designs and discussions and in addition to the earlier derived list of relevant user interface
components, we derive three design requirements from the focus group for the construction of the prototype: i) a
flexible mounting system should be provided on the arm, e. g., by using straps, to enable flexibility and adaptability of
such a prototype to the human arm; ii) interchangeability of the user interface components should be provided so that
multiple elements can be fitted on one base unit; iii) a modular design (i. e., modularity) of two or more units can enable
interchangeability of the components and reduce clutter.

To follow up on our focus group, we decided to iteratively implement a wearable haptics system that initially provides
buttons, sliders, and rotary knobs to users without any automatic mechanism, relying instead on users to rotate their
arm to access the different components. Participants grouped buttons and checkboxes into one category as they provide
very similar functionality. Nonetheless, we will focus on buttons, not making any assumption about checkboxes here.

3.2 Iterative Development

After obtaining the insights from the focus group, we iteratively developed a prototype of our ARm Haptics system
(inspired by the iterative enhancement method [5]). Since the experts from our focus group had a diverse range of
opinions, including which user interface components to represent, we decided that a modular design would be useful.
Designing the prototype in a modular way enables the exchange of parts, which in turn enables adaptivity to different
usage scenarios. Due to the iterative development approach, we further opted for low-cost hardware components
that can be exchanged, such as a NodeMCU-microcontroller that connects to Augmented Reality devices through the
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Fig. 3. Artifacts of the design process for the ARm Haptics system. Left: Simplified sketches from the focus group suggesting potential
designs for haptics worn on the forearm. Center: Earlier prototype of our system (bottom: individual rails to mount 3D-printed
components; top: NodeMCU, mounted separately, for controlling the interface components). Right: Final prototype of our ARm
Haptics system (bottom: rail mechanism with clip to mount modules; top: inside of a haptic module with battery and NodeMCU).

MQTT-protocol4. To create the actual components, we made use of 3D printing, as it allows rapid prototyping at a low
operational cost (more details on how to create new modules at the end of the section).

In the first iteration, we created a prototype that consists of two parts: a mounting that can be worn on the user’s
arm (using soft velcro wrap easily adjustable in length) and a foundation for extension modules on top. The latter could
be used for interface components, but also to provide housing for the microcontroller (see Figure 3 – center). The base
module is attached with flexible straps to the arm and includes rails on which the extension module can be attached.
This module can then be strapped to the arm as shown in Figure 3. The modular design of the mounting base unit and
the extension module reflects the focus group’s design requirements of interchangeability and modularity, while the
strap-based mounting solution was directly suggested. Our design here added railings to facilitate the interchangeability
so that the extension module can easily be exchanged. In this iteration, our prototype had the microcontroller and
interface components in different extension modules, which were connected via cables. Furthermore, we created an
extension module for each interface component (button, slider, and rotary knob) and gave them the same appearances
as the mid-air interface components used for the Hololens 2. Here, we used the Mixed Reality Toolkit5 as the reference
for the visual appearance.

In the second and final iteration, we refined our first prototype. Here, three authors of the paper tested the first
prototype and looked for opportunities to improve it. First, we added a clip-based mechanism that would make the
mounting of the extension modules more robust (see Figure 3 – right). Moreover, we integrated the microcontroller
and an additional battery with the different interface components in one extension module, meaning each interface
component, such as the button or slider (see Figure 4), became one stand-alone extension module, increasing the
interchangeability requirement of the focus group even further as reattaching the cable connections from the first
iteration is not necessary anymore. After that, we added image markers to allow tracking of our haptic modules with
the cameras of the AR headset (see Figure 1 – right). Finally, we used Unity3D6 and extended the MRTK library to

4MQTT-prototcol. https://mqtt.org, last retrieved May 18, 2022.
5Mixed Reality Toolkit. https://github.com/microsoft/MixedRealityToolkit-Unity, last retrieved May 18, 2022.
6Unity3D. https://unity.com, last retrieved May 18, 2022.
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Fig. 4. Three example modules developed as an initial set for the ARm Haptics system. Left: button module (binary input: pressed,
not pressed). Center: slider module (discrete input: 100 levels). Right: knob module (discrete input: 100 levels).

support our wearable haptic components. We implemented a linking mechanism for which users need to hold the haptic
component next to the MRTK interface component to link them (see Figure 1 – right). This linking mechanism was
required as one interface component such as a slider can exist more than once within the same interface and the system
would not know which to control otherwise. A progress bar that fills up over the duration of one second visualizes
the linking process. On the contrary, users need to move the haptic component away from the virtual counterpart
and as soon as the progress bar is empty the components are unlinked. Here, to track the image targets of the haptic
components, we used Vuforia7. 3D-printable files, instructions and the source code of our Arm Haptics system are
available for free on GitHub8.

3.3 Prototyping Input Modules

To create new input modules, we provide a blank 3D model that contains all basic components (e.g., rail and clip for
mounting, mounts for microcontroller and battery, space for marker). The model can be adjusted before 3D printing,
including the dimensions of the module. However, it may require adapting the module mount as well because increasing
the size will reduce the number of possible module slots (possible by default are four module slots with one slot unused
– no slot on the backside, as an unnatural arm tilt would be required). There after, one can adapt our Arduino sample
code by adding new MQTT events for the new input module and compile the code onto the NodeMCU board. Finally, a
virtual counterpart needs to be developed in Unity3D (extending an existing blank prefab) and an image marker needs
to be added to the hardware and virtual counterpart (which can be controlled with the MQTT events).

4 USER STUDY

To examine the performance (task completion time, error rate), subjectively perceived user experience, and task load for
our ARm Haptics system, we compare it in a user study to mid-air interactions based on the hand tracking capabilities
of the Hololens 2 (baseline condition), meaning complete tracking of all fingers and joints in 3D space. In the baseline,
users can “touch” and interact with the different interface components; however, no haptic feedback is provided.

4.1 Study Design

We conducted a within-subjects laboratory user study in Augmented Reality using the Microsoft Hololens 2. We decided
for input type and input task as independent variables. The first variable, input type, had two levels: haptic input and
MRTK input. Haptic input refers to our ARm Haptics system and MRTK input represents the Mixed Reality Toolkit

7Vuforia. https://developer.vuforia.com, last retireved May 18, 2022.
8Removed for reviewing process.
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(MRTK). The MRTK is frequently used with the Hololens 2 and makes use of its hand-tracking capabilities to enable
mid-air interactions. It furthermore provides various interface components, including the ones integrated in ARm

Haptics, namely buttons, sliders, and rotary knobs. For haptic input, hand tracking is disabled and input results from the
hardware. The second variable, input task, has four levels (buttons vs. sliders vs. rotary knobs vs. combined). We chose
input task (representing different modules) as an independent variable, to understand the influence of the different
modules on users’ performance. Each of these tasks consists of five interface components (except combined, which
consists of four components). In the first three tasks, each task presents one of the interface component (buttons, sliders,
or rotary knobs) five times, while combined contains two sliders and two buttons (to test multiple components attached
to our system; maximum of prototype is two; see Figure 1 – center). Moreover, the first three tasks involved a pilot trial
that contained one interface component to become familiar with the task. We tested all four tasks for each input type
within a block, resulting in two blocks. Thereby, participants only had to put on and remove the ARm Haptics system
once. We counterbalanced both blocks and the first three levels of the input task within each block, using a Latin-square
design that resulted in six different orders. As combined contains both buttons and sliders, which are levels of their own,
we tested it last within each block. We quantitatively evaluated user performance, taking task completion time, error
rate, user experience with the user experience questionnaire (UEQ) [28], task load with the NASA Raw-TLX (NASA
Raw-TLX) [18], and individual Likert-items as our dependent variables. Furthermore, we conducted semi-structured
interviews to gain further insights.

To answer the research question (RQ) whether and to what extent the interaction with Augmented Reality (AR) user
interfaces can be improved using wearable haptic modules representing interface components, we investigate following
hypotheses:

𝐻1 We expect that the interaction times differ between MRTK input and haptic input. As haptic input requires the
additional step of first linking the virtual counterpart, we expect it to be slower.

𝐻2 We hypothesize that haptic input will result in fewer input errors than MRTK input because we directly track the
input and not the user’s hands (translated to input), which could introduce additional noise.

𝐻3 We predict that haptic input results in a better user experience because it contributes additional haptic sensations
and is potentially familiar to the participants.

𝐻4 We expect higher subjectively perceived task load for haptic input because it requires additional effort to first select
the virtual counterpart.

4.2 Procedure

In the beginning, we introduced our participants to the purpose and procedure of the user study. Thereafter, we asked
for their consent to the study conditions. Then, we introduced them to the Hololens AR headset and, if they started
with the haptic input block, we asked them to also wear the ARm Haptics system. Next, participants started with their
first of four input tasks (for each block). Each task started with a test trial with one input component (except combined,
which always was the last task in each block and had no test trial; see Figure 5). After, participants continued with the
actual task, which contained five input components (four for combined). Components were buttons that needed to be
pressed, sliders that needed to be set to random position (ranging from 1 to 100), and rotary knobs (same as sliders). For
each task, we asked participants to interact as quickly and precisely as possible. Moreover, each task was introduced
as an AR dialog with a small 3D object which participants had to manipulate with their interaction (see Figure 5 –
center and right). After each task, participants were asked to provide ratings for two statements on a 7-point Likert
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Fig. 5. Impressions from the user study. Left: Two participants using the two different input types (left:MRTK input, right: haptic
input). Center: Pilot trial for input task sliders. Right: Measured trial for input task sliders.

scale. When finished with the first block, participants performed the same tasks again in the second block. After each
block, we asked participants to fill out the UEQ and NASA Raw-TLX. After all blocks, we conducted a semi-structured
interview with all participants. The study took 45 to 60 minutes for each participant.

4.3 Apparatus

We conducted the user study in an empty office space (dimensions: 4m x 4m). For AR, we used the Microsoft Hololens 2
headset, which offers a diagonal field of view of 52 degrees and hand-tracking capabilities with 30 Hz. We developed
our software with Unity3D and additionally used the MRTK library to implement the user interface (including the
dialog boxes and interface components, namely buttons, sliders, and rotary knobs). Each task participants had to perform
during the study contained a dialogue box with a short task description and different interface components (depending
on the task). The dialog box always spawned in front of the participant, 30cm lower than the headset position. The
distance to the dialog box could be controlled by moving closer or stepping away. For theMRTK input, participants could
use their hands, tracked by the Hololens, to perform the interactions in mid-air. For the haptic input, we disabled the
hand-tracking capabilities and participants had to use the ARm Haptics system. We ensured that the MRTK components
have the same size as their input module counterpart.

4.4 Participants

We recruited 12 volunteers (8m, 4f, 0d), aged between 21 and 34 years (M=24, SD=4) through mailing lists and bulletin
boards at our university. Participants were not compensated for the study. Eleven participants said they were right
handed, while one participant was left handed. Moreover, eleven participants stated that they did not have any prior
experience with AR headsets.

4.5 Results

Task Completion Times. For both conditions (haptic input,MRTK input), participants completed each of the four tasks.
For each task, we logged the task completion times (see Figure 6). The maximum time of each task was limited to 180
seconds. All task completion times are compared in Table 1 and tested with a Wilcoxon Signed-rank test. Here, we can
conclude that for buttons, MRTK input is significantly faster than haptic input.
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Fig. 6. Results from the analysis of the recorded logging data (hand tracking represents MRTK input. Left: Boxplots of the task
completion times within each condition. Right: Total number of errors for all tasks within each condition.

Table 1. Pairwise comparisons of conditions (haptic input, MRTK input) concerning the different tasks. W and Z from Wilcoxon
Signed-rank test. Effect size (r): > 0.1 small, > 0.3 medium, and > 0.5 large effect.

Haptic Input MRTK Input
Task Md IQR Md IQR W Z p r

Buttons 23.60s 14.58s 9.66s 5.79s 78 3.06 0.002 0.62
Sliders 132.55s 97.57s 121.01s 66.70s 19 -1.30 0.871 -

Rotary Knobs 68.82s 14.61s 82.00s 32.86s 22 -1.33 0.814 -
Combined 65.22s 31.79s 65.89s 42.05s 29 -0.78 1 -

Error Rate. In the following, we discuss the number of errors that occurred within each task grouped by condition
(see Figure 6). Each of the four tasks contained five interface elements (except for combined which contained four). For
each interface element, one error could occur. An error would be a button not triggered or a slider/rotary knob on the
wrong level (both interpreted as discrete scales with 100 levels). Overall, participants made a total of 7 errors with
haptic input (2.92%) and 19 with MRTK input (7.92%). All errors occurred with sliders and knobs. A one-tailed Wilcoxon
Signed-rank test revealed a significant difference between the conditions (W=0, Z=-2.22, p=0.031, r=0.45). We perform a
one-tailed test because we assume haptic input to result in fewer errors (see 𝐻2). For haptic input, the errors resulted
from four participants (median error of 1 level), while for MRTK input six participants made errors (median error of 2
levels).

Individual Likert-Items. After each task, we presented participants with two statements and asked them to rate them
on a 7-point Likert scale (1=strongly disagree, 4=neutral, 7=strongly agree). All responses (grouped by input task and
input type) are shown in Figure 7.

The first statement was “It was easy to perform the interaction.” Overall, participants agreed for haptic input (Md=6,
IQR=2.25), while they were neutral forMRTK input (Md=3.5, IQR=4). A Wilcoxon Signed-rank test revealed a significant
difference between the conditions (W=687, Z=4.83, p<0.001, r=0.49). We can conclude that haptic input was rated as
significantly easier in the interaction than MRTK input.

The second statement was “The interaction felt real.” Over all tasks, participants agreed that haptic input (Md=6,
IQR=2) felt more real than MRTK input (Md=3, IQR=3). A Wilcoxon Signed-rank test revealed a significant difference
between the conditions (W=812, Z=5.12, p<0.001, r=0.52).We can conclude that haptic input was perceived as significantly
more real than MRTK input.
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Fig. 7. Subjective ratings with 7-point Likert-items for the different input components evaluated. The task with button and slider
combined is not shown. Left: Subjective ratings for “The interaction was easy.” Right: Subjective ratings for “The interaction felt real.”

User Experience Questionnaire. After each condition, we asked participants to fill out the User Experience Ques-
tionnaire UEQ [28]. For attractiveness, participants rated haptic input (Md=1.83, IQR=0.63) higher than MRTK input

(Md=1.67, IQR=0.92). However, a Wilcoxon Signed-rank did not reveal an effect (W=29.5, Z=0.91, p=0.391). For hedonic
quality, haptic input (Md=2.13, IQR=0.84) was rated higher than MRTK input (Md=1.88, IQR=0.59). Again, a Wilcoxon
Signed-rank did not reveal a significant difference (W=39, Z=0.59, p=0.594). For pragmatic quality, participants rated
haptic input (Md=1.42, IQR=0.33) higher than MRTK input (Md=1.04, IQR=0.96). Here, a Wilcoxon Signed-rank revealed
a significant effect (W=58.5, Z=2.28, p=0.020, r=0.46).

NASA Raw-TLX. We asked participants to answer the NASA Raw Task Load Index (Raw-TLX) questionnaire[18], for
which a lower score indicates lower task load. The resulting score for haptic input (Md=35, IQR=20.63) is significantly
lower than for MRTK input (Md=53.75, IQR=9.79) (W=74, Z=2.75, p=0.003, r=0.56). Moreover, we compared the results
on the subscales of the NASA Raw-TLX and found that haptic has a significantly lower score on physical demand,
effort, and frustration (see Table 2).

Table 2. Pairwise comparisons of conditions (haptic input,MRTK input) concerning the subscales of the NASA Raw-TLX. W and Z
from Wilcoxon Signed-rank test. Effect size (r): > 0.1 small, > 0.3 medium, and > 0.5 large effect.

Haptic Input MRTK Input
Subscale Md IQR Md IQR W Z p r

Physical Demand 4.50 7.25 12.00 5.50 66 3.03 0.006 0.62
Effort 8.00 5.50 13.00 5.25 4 -2.64 0.041 0.54

Frustration 8.00 6.50 12.00 3.25 4 -2.64 0.029 0.54

Semi-structured Interviews. During our semi-structured interviews, we asked participants the following questions:
“Which of the two input alternatives did you like better and why?” In total, eight people named the haptic input device

as the better alternative in general because of the simpler setting of values and the “better feel” (P10). One person was
indecisive and added that, although setting values was easier with a haptic input device, they found the device on her
wrist irritating. Two people noted that they found the hand tracking to be more innovative.

“What did you like about the MRTK input?” Three people mentioned the button and three people noted the lack of
the distracting device as an advantage. One person found it to be faster due to the lack of linking. While another person
noted that it was “something you’ve never done before” (P7). Familiar interaction also played a role: One person liked
that the virtual elements could be operated like real elements and another that the interaction was “already somewhat
familiar from the touchscreen” (P11).
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“What did you not like about the MRTK input?” For this question, the participants mainly gave answers that refer
to the difficulty of setting values, especially with the slider, but also with the rotary knob. Thus, seven participants
mentioned the sensitivity of the slider as a problem. Three mentioned that the values were readjusted when they
released the slider. Four of the participants also disliked the beginning of the interaction. Here, two people stated that
they did not know exactly where to reach. Regarding the rotary knob, one person remarked about interacting with a
purely virtual knob: “You didn’t even have it in your hand yet and it already started” (P6). They also criticized the lack
of feedback. In addition, one person commented that “it didn’t feel particularly real” (P10).

“What did you like about the ARm Haptics system?” Nine people noted the easier setting of values, while one person
commented: “It was easier to set the values, so you had more of a sense of achievement, which made it nicer and more
fun” (P9). Seven people emphasized the advantage of being able to touch something, making it feel more real.

“What did you not like about the ARm Haptics system?” Among the negative aspects of the haptic input device, six
participants mentioned the linking process, as it sometimes took a while and did not work perfectly. One person noted
that the haptic button was unnecessary. Five people referred to the rather large device that one must wear on the wrist.
In addition, one person reported the necessity of always using both hands as a negative aspect.

“For which interaction component (button, slider, rotary knob) was the ARm Haptics system the most helpful and why?”

Here, nine people named the slider because of the easier setting of values, but also because of the improved termination
of the interaction, since the haptic slider “does not jump when released” (P8). One person mentioned both the rotary
knob and the slider, and for another person, the slider ranked directly after the rotary knob.

“Would you use such a haptic input device in the future and why (not)?” This question was asked under the assumption
that participants would have to use an AR headset. All participants stated that they could imagine using such a haptic
input device. Three participants tied their willingness to use it to the improvement of the rather large device: it should
be smaller and not require “unnatural arm movement” (P10). Three further participants stated that it depends on hand
tracking. They would try hand tracking first and then decide based on further experience.

5 DISCUSSION

In the following, we discuss the findings of our work. We decided to primarily shape the discussion around the
hypotheses presented in section 4.1. Moreover, we discuss potential applications for our ARm Haptics system as well as
limitations and future work.

Task Completion Times (𝐻1). The interaction with interface components differs between haptic input with our ARm
Haptics system and the MRTK input because, for the haptic input, an additional step is required in which users need
to link it to the virtual counterpart they would like to interact with. This linking process requires users to hold the
haptic input close to the virtual counterpart and wait for one second for the linking to be complete. However, this
additional step is not present for the MRTK input; thus, we hypothesized that it would result in differing interaction
times compared to the haptic input (see 𝐻1). In our analysis, we found that button input resulted in significantly
faster task completion times forMRTK input than for haptic input; however, we did not find any significant
differences for sliders and knobs, and hence, cannot accept our hypothesis 𝐻1. Compared to sliders and rotary knobs,
button input can be understood as binary input – a button is either pressed or it is not pressed. As this interaction is
rather simple and does not require much precision, the interaction in mid-air seems sufficient. While previous work
has shown that connecting physical objects with virtual interface components can reduce interaction times [20], the
additional linking process in combination with button input resulted in an opposite effect in our study.
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The linking process might not be necessary for all applications. If the number of existing elements is low and
they are far apart then it might be suitable to skip the linking process by automatically link the haptic elements to their
virtual counterparts based on closest proximity. Yet, if many elements are cluttered together, as it is for example the
case in many menus, then this might lead to an increase in error rate as the haptic element might connect to the wrong
virtual element. It thereby is a trade-off between task completion time and error rate.

Another option to accelerate the linking process could be the usage of eye-tracking and gaze selection. If users’ gaze
focuses the virtual interface element for a short time, then the linking could be automated through gaze selection.
The creation of the link might still be necessary, as users’ might divert their gaze onto ARm haptics to find and press
the haptic element. Yet, if it is expected that the hand is near ARm haptics anyways, for example during an ongoing
interaction or during rapid repeated interactions, then it could be possible to completely skip the linking and direct
the haptic input directly at the focused virtual user interface element. Similar gaze- and hand-based interactions have
already been combined [31, 32], yet it is important to account for the “Midas Touch”-problem. We nevertheless would
expect a reduction in task completion time.

Error Rates (𝐻2). One of the motivating factors for developing a haptic input system was to achieve higher precision
in the interaction and thereby cause fewer errors when interacting (see 𝐻2). To analyze this, we compared both types of
input and found that haptic input resulted in significantly fewer errors than MRTK input. Thus, in line with previous
work on stationary haptics [11], we can accept our hypothesis 𝐻2. Since we did not register any errors for button input
in either condition (meaning a participant would have failed to press a button), all errors resulted from interaction with
sliders and rotary knobs. Here, rotary knobs resulted in a total of three errors and sliders caused 23 errors (while there
were five knobs, the combined task added two additional sliders, resulting in overall seven per participant and input

type). During our study,we often observed that the slider value would jump for participants in theMRTK input
condition after they had already set the correct value.What caused this effect was that when participants let go
of the slider, MRTK interpreted that as continued input and proceeded in changing the value. During the interviews,
participants mentioned this as annoying and highlighted that the haptic slider “does not jump when released” (P8).

User Experience (𝐻3). In terms of user experience, we hypothesized that haptic input results in better user experience.
As it is not recommended to sum up attractiveness with hedonic and pragmatic quality, we compared each of the
categories individually. Here, we found a significant effect of input type on pragmatic quality, meaning the perceived
usefulness, efficiency, and ease of use were greater for haptic input thanMRTK input. Hence, we argue that we
can partially accept our hypothesis𝐻3. Interestingly, we did not find any differences in hedonic quality or attractiveness.
Nevertheless, both haptic input and MRTK input resulted in good to excellent scores for the individual items (except for
dependability, which was above average).

Task Load (𝐻4). For task load, we expected a higher load for haptic input than for MRTK input (see 𝐻4). However,
when comparing the six different items, we found three significant differences (physical demand, effort, and
frustration) that all indicated better results for haptic input. Hence, we cannot accept our hypothesis 𝐻4. This is
especially interesting for physical demand and effort, as it implies that interacting in mid-air is more demanding than
via a haptic device, even when an additional step has to be performed (linking of haptics with virtual counterpart).

Designing Interfaces with ARm Haptics in Mind. In the last decades, researchers presented various ideas improving
haptic feedback such as improved controller [47] or drones with haptic elements [2]. With ARm Haptics, we investigate
a wearable system for providing haptics. Thus, ARm Haptics allows in contrast to the controllers to interact with both
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hands in mid air. While drones can provide a similar type of feedback, the robustness and precision of ARm Haptics

could provide a benefit. The fact that ARm Haptics is placed at the users arm also has the drawback that users need
to place the arm to map the physical interface element with the virtual counterpart. This challenge, however, can be
addressed by designing interfaces with ARm Haptics in mind. Thus, designers should place UI components, for
which haptics is beneficial, in a way that the user can also comfortably place their arm to match the virtual
elements.

Automated Switching of Haptic Elements. We designed the ARm Haptics system in a modular way. Users can easily
attach and remove the modules. However, this process still takes time. We envision that in the future, the interface
elements change automatically to match the currently needed input module similar to the Haptic Revolver [47]
providing feedback in VR. The exchange of haptic elements could also be enabled through the context of the users’
interaction [38].

Future Interface Components. In this work, we focus on standard interface elements known from classical UIs as well
as the MRTK. These elements provide a solid base for our approach. However, the presented approach can also be used
to provide a more diverse type of feedback. This could be realized by combining the approach with shape changing
displays capable to mimic different virtual objects [36].

3D printing and off-the-shelf hardware components enable researchers and developers to quickly create and explore
new input modules with the ARm Haptics system. In this regard, especially 3D printing opens up the possibilities
to replicate existing haptic input techniques from previous work or develop new input devices that do not
exist yet.

Applications Opportunities for the ARm Haptics System. This work contributes actionable insights on when it makes
sense to use the ARm Haptics system. Our findings indicate that it depends. First, like mid-air input, our ARm Haptics

system is not well-suited for longer interaction durations because in both cases, users will have a hard time keeping
their arms up over time. Here, it would make sense to investigate different ways of linking the haptic device to virtual
counterparts that allow users to keep their arms in a more natural pose, thus allowing for longer use.

Nevertheless, we can see the ARm Haptics system as a great addition to an existing interface. It could be useful
when there is higher precision input required that directly translates to actions of a system or machine. This
could be, for example, adjusting the volume of music, the brightness of lights, or the speed of a fan. In such cases, it
would be problematic if the mid-air input resulted in a jump of the slider value. Here, our ARm Haptics system can be a
useful addition to provide precise input.

Limitations. A limitation of our work is the limited number of interface components considered. Our findings already
indicate that there are significant differences between the different components. Accordingly, no generalization can be
made for all components, especially those not tested. It should also be noted that we conducted a laboratory study in
which participants were only asked to interact with the input components we chose to implement in ARm Haptics.
Users might react differently to the haptic input device in real applications. This might especially be the case if users
also have to interact with physical objects at the same time. Although the concept of ARm Haptics takes it already into
account that both hands remain free (when not interacting with AR content), the participants already noted in the
study that the device can be bulky. The perceived bulkiness, if any, could become a burden in the long run, just like the
required permanent holding up of the arm. Such temporal effects cannot be adequately determined in a relatively short
study totaling less than one hour.
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Future Work. In future work, various aspects of such a haptic input device should be evaluated. This relates in
particular to the consideration of further interface components. Furthermore, the haptic input device must be tested in
non-laboratory scenarios, especially those in which users must also interact with real objects. Also, the influence of the
duration of use should be evaluated. In this regard, it makes sense to investigate smaller form factors. Currently, the
haptic modules are rather large, as they use simple image targets for tracking. However, future iterations could use
other tracking approaches, resulting in smaller and lighter modules.

6 CONCLUSION

In this paper, we presented our ARm Haptics system, which provides 3D-printed easily-changeable interface components
that provide haptics for interaction in mobile Augmented Reality. After an iterative development process, we evaluated
our system in a user study in which we compared it to hand-tracking input based on the Mixed Reality Toolkit (MRTK).
Our results show that our system can benefit user interaction for some components (i.e., sliders, rotary knobs), while it
offers fewer benefits for more simplistic interaction components (i.e., buttons). Given the better user experience and
lower task load, we believe that the ARm Haptics system provides users with a good alternative to mid-air interactions
that provides haptic feedback to users. Especially in combination with other forms of interactions, the haptic input can
be a effective solution for precise input in Augmented Reality.
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