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Figure 1: Three butterflies with different levels of shape realism. Left: Low shape realism. Middle: Moderate shape realism.
Right: High shape realism.

ABSTRACT
In Virtual Reality (VR), Steady-State-Visual Evoked Potentials (SSVEPs)
can be used to interact with the virtual environment using brain
signals. However, the design of SSVEP-eliciting stimuli often does
not match the virtual environment, and thus, disrupts the virtual
experience. In this paper, we investigate stimulus designs with
varying suitability to blend in virtual environments. Therefore, we
created differently-shaped, virtual butterflies. The shapes vary from
rectangular wings, over round wings, to a wing shape of a real but-
terfly. These butterflies elicit SSVEP responses through different
animations – flickering or flapping wings. To evaluate our stimuli,
we first extracted suitable frequencies for SSVEP responses from the
literature. In a first study, we determined three frequencies yielding
the best detection accuracy in VR. We used these frequencies in a
second study to analyze detection accuracy and appearance ratings
using our stimuli designs. Our work contributes insights into the
design of SSVEP stimuli that blend into virtual environments and
still elicit SSVEP responses.

CCS CONCEPTS
• Human-centered computing→ Virtual reality; User studies.
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1 INTRODUCTION
Steady-State Visual Evoked Potentials (SSVEPs) are cortical re-
sponses that occur when one is stimulated visually at a consistent
frequency [56]. For example, viewing a light source at a constant
frequency causes a measurable resonance at electrodes placed on
the occipital lobe [11], a posterior part of the brain that is responsi-
ble for visual perception. Early work in neuroscience realized the
potential of SSVEP, requiring only a low amount of data and short
training times to achieve satisfactory results [55, 66]. Since cortical
activity is passively generated, the use of SSVEP for people with
physical impairments moved into the focus of research [12].

SSVEPs have become attractive in the domain of Human-Computer
Interaction (HCI) due to their robustness [11], reasonable signal-
to-noise ratio [48], and high input resolution [52], allowing one
to reliably distinguish between light sources flickering at different
frequencies using cortical activity. By looking at the respective
flickering items, users can reliably select elements and type or read
text [1, 22, 25], control hardware (e.g., wheelchairs [33]), or navigate
virtual environments [24]. The visual presentation of SSVEP stimuli
went through an evolution to better integrate them with current
user interfaces. This ranged from the use of LEDs [61], abstract
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flickering elements on the computer screen [66], to the integration
of flickering elements in mixed reality environments [31]. SSVEPs
have been successfully evaluated in augmented reality [59] and are
slowly becoming popular for immersive hands-free interaction in
virtual reality (VR) [2]. VR benefits from the implicit integration of
SSVEP stimuli into their environments, providing user experience
designers with an additional interaction channel and a method to
estimate which elements attract the user’s attention.

In general, VR aims for immersive experiences that let users
dive into a digital world that feels like their own reality. However,
current representations of SSVEP stimuli are rendered in an ab-
stract form of mostly flickering squares or circles, making it difficult
to integrate SSVEP seamlessly into the virtual environment. Al-
though past research reported that integrating SSVEP in VR can
be successfully achieved [24], virtual experiences are disrupted
by presenting abstract SSVEP stimuli which do not fit the virtual
environment. We argue that SSVEP stimuli should blend into the
environment, enabling a subtle interaction in VR. Past research
investigated alternative SSVEP representations such as rotating
items [43] or flickering menu navigation elements [2]. Hence, there
exists a research gap regarding the comparison of the classifica-
tion accuracy of abstract stimuli like menu items and blending
objects that match the appearance of the VR environment. This
poses the question: How does the SSVEP stimuli appearance affect
the classification accuracy in VR?

In this work, we evaluate how different SSVEP parameters im-
pact classification accuracy in VR. We start by surveying past HCI
literature regarding commonly used SSVEP frequencies. We then
performed our first study to compare these frequencies regarding
their classification accuracy. We selected a triple of frequencies that
yielded the highest classification accuracy for our second study. For
this study, we designed SSVEP stimuli in form of butterflies with
three levels of shape realism (low; moderate; high, see Figure 1).
These stimuli elicit SSVEP responses through different animations
–flickering wings or flapping wings.

In terms of classification accuracy, we found that flickering wings
outperformed flapping wings. Our results show that the butterfly
with quadratic and flickering wings yielded the highest accuracy
(78.7%) for the classification of the three frequencies. For a flapping
butterfly with real wing contours, we obtained a smaller classifi-
cation accuracy (67.5%). Subjectively, participants perceived the
butterfly with realistically-shaped wings as most natural in terms
of appearance and movement. Our findings provide VR developers
insights that help them better understand the trade-off between
classification accuracy and a realistic appearance of SSVEP stim-
uli that blend with VR environments. We choose butterflies for
our approach because the large wings size allowed us to use their
anatomic properties to excite the VR users’ retinas. Further, natural
scenes are common in VR, therefore, we opted for a commonly
occurring animal that has wings and can float in the air to make its
appearance in front of the user plausible. Nonetheless, butterflies
do not occur in every VR scenario. Therefore we used them as an
example for SSVEP-based interaction in VR. To put our results into
perspective, we outline more SSVEP stimuli integration opportu-
nities as future work. Our work serves as an initial example for
integrated SSVEP stimuli in VR to kick-off research that explores
the underlying design space.

The contribution of our work is twofold: (1) We summarize
commonly used SSVEP frequencies, which we evaluated in a first
study (N=12) by utilizingmachine learning to compare classification
accuracies. (2) We performed a second study (N=12) evaluating how
different realism levels of our SSVEP stimuli affect the classification
accuracy and the associated subjective appearance ratings.

2 RELATEDWORK
Previous research showed that SSVEPs have a high robustness,
satisfactory information transfer rate, and good signal-to-noise-
ratio [28], making them suitable for BCI-based interaction. Exem-
plary scenarios range from steeringwheelchairs [29, 33], controlling
prosthetic hands [35], providing text input through spellers [28, 57,
62], or interaction in VR [2, 4, 24, 50]. Available low-cost BCIs, such
as the OpenBCIGanglion1 can be efficiently deployed as they do not
require a rigorous setup of hardware [3]. As a result, a wide array
of research emerged in HCI using the SSVEP interaction paradigm.

2.1 SSVEP Stimuli Characteristics
SSVEP stimuli can be displayed with different characteristics. Pre-
vious research investigated the robustness of SSVEP stimuli prop-
erties including different frequencies, sizes, shapes, colors, and
patterns. SSVEP frequencies can be divided into three frequency
ranges. Low frequencies are centered around 15Hz, medium fre-
quencies around 31Hz, and high frequencies around 41Hz [60]. In
this context, Kuś et al. identified a continuous range of suitable
frequencies for strong SSVEP responses, ranging from 12Hz to
18Hz [26]. The selection of suitable frequencies is important since
the frequency selection has an essential influence on the interaction
performance [57].

SSVEP responses can be elicited through stimuli using blinking
LEDs or flickering graphical elements on displays [66]. Previous
approaches used differently colored LEDs, rendered black and white
flickering shapes on displays, or pattern reversal stimuli which are
alternating graphical patterns (e.g., checkerboards) [66] or motion-
reversal stimuli [65]. Moreover, stimuli in motion like spinning
[43] or repeatedly size-changing shapes [7] elicit SSVEP responses.
Lately, SSVEP was adopted for interaction in augmented reality
(AR) [58, 59] and VR [2, 32].

2.2 Interacting with SSVEP
SSVEP stimuli induce mental load and visual fatigue during inter-
action [36, 37]. Xie et al. compared periodic flickering to motion-
reversal stimuli [64]. In terms of mental workload, motion reversal
stimuli outperformed periodic stimuli. Long-term BCI interaction
can also employ motion-reversal stimuli to reduce visual fatigue. To
enhance the visual comfort of SSVEP stimuli, Rekrut et al. compared
SSVEP responses of spinning icons to traditional flickering stimuli
[43]. They showed that spinning icons could perform equally well
than traditional SSVEP stimuli in terms of classification accuracy
while they were perceived as less tiring. Many SSVEP-based ap-
proaches are restricted to abstract tasks. Therefore, everyday use
cases were investigated by Bi et al. [5]. They evaluated SSVEP-
based interaction with a heads-up display (HUD) integrated into a

1Ganglion Board, https://shop.openbci.com/collections/frontpage/products/ganglion-
board, last checked on March 11, 2022.
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vehicle’s windshield. They classified SSVEP responses to control a
simulated car. They showed that SSVEP-based HUD can indeed be
used to control a car.

However, previous approaches rely mainly on 2D displays or
LEDs [62] to elicit SSVEP responses. Other approaches used SSVEP
in AR [59]. For example, controlling a smart home via a SSVEP-
based AR- user interface (UI) [58]. In contrast to these approaches,
VR relies heavily on interactionwith a synthetic, 3Dworld. Previous
approaches investigated a variety of SSVEP stimuli in immersive
VR environments. Simply adopting 2D stimuli useful on flat dis-
plays in VR might not fit the three-dimensional character of virtual
environments. For example, a black and white flickering square
floating in mid-air in a VR fantasy game. Prior work showed that
SSVEP in VR improves user engagement (e.g., higher information
transfer rate) compared to 2D displays [24]. Hence, SSVEP in VR
promises a wide array of interaction possibilities in the future. We
are confident that the full potential of SSVEP-based interaction in
VR does not rely on the classification accuracy only. Instead, we
argue that the appearance of the presented stimuli should blend
into the VR world rather than disrupting the virtual experience. To
investigate this, we designed SSVEP stimuli that have the potential
to blend with the VR environment while eliciting SSVEP responses
that can be measured robustly. Before we introduce our approach,
we introduce prior work to ground our research.

2.3 SSVEP-based Interaction in Virtual Reality
Choi et al. investigated classification accuracy and visual comfort of
SSVEP stimuli in VR [7]. To control an avatar in a virtual environ-
ment, they employed two stimuli types – a grow shrink stimulus
(GSS) and a pattern-reversal checkerboard stimulus (PRCS).

Stimuli that were subjectively more comfortable to participants
showed higher classification accuracy. Nonetheless, the authors
state that more investigations are needed to generalize the results.
With this in mind, we designed our own set of SSVEP stimuli for
VR with varying visual appearances.

Stawicki et al. employed an SSVEP-based virtual control of a
vacuum cleaner robot in VR [50]. They compared traditional SSVEP
stimuli on a 2D display to an immersive VR scenario. They achieved
a better information transfer rate in VR as well as a lower task com-
pletion time than on a traditional PC setup. To navigate a virtual en-
vironment, Stawicki et al. compared SSVEP-based interaction with
traditional PC environments to immersive VR using head-mounted
display (HMDs) [49]. Through flickering rectangles, participants
could move through the virtual environment by focusing on rect-
angles each associated with a specific movement. They found that
in VR participants needed fewer commands to navigate the virtual
environment. Further, participants traversed the environment 50%
faster when using a VR-HMD. On top of that, participants were
more aware of the virtual environment when using HMDs com-
pared to a traditional PC setup. Ma et al. combined SSVEP-based
BCI with eye tracking for text entry in VR [32]. Through the combi-
nation of these two modalities, they achieved a higher information
transfer rate compared when using a single modality. They were
able to achieve an input speed of 10 words per minute. In terms
of accuracy, their VR approach outperformed similar approaches
that relied on displays to elicit SSVEP responses [51]. A playful

approach by Koo et al. used SSVEPs to move a ball through a maze
in VR [24]. The ball was viewed from a bird-eye view. Around the
ball, there were flickering squares. Focusing on one of the squares
lets the ball move in the direction of the square. The goal was to
steer the ball to the end of a maze. Through a study they found that
interacting in VR resulted in shorter playtime and therefore higher
information transfer rate than playing the game using a traditional
2D display.

In essence, previous research shows the great potential of SSVEP-
based interaction in VR. In contrast, our work provides insights
into the trade-off between satisfactory interaction stability and
visual comfort for SSVEP stimuli in VR. We envision that a ro-
bust SSVEP-based contactless interaction for persons with physical
impairments [33] can make future VR apps more accessible.

A closely related previous example for this is Sublime. Here,
Armengol-Urpi et al. proposed a concept that incorporates stimuli
into a VR environment [2]. In a virtual environment, users could
focus on flickering movie covers in a virtual menu to select a movie
to watch. While focusing on the movie covers, loading bars indi-
cated when the selection is triggered. Then the movie was started.
During playback, an additional object could be focused to get back
to the previous menu. In this approach Armengol-Urpi et al. used
higher frequencies (above 41Hz [60]). Similar to this approach, we
integrated SSVEP stimuli into VR objects rather than displaying
them as an artificial graphical user interface (GUI) element. We
believe that this enhances the virtual experience, and thus, makes
SSVEP-based interaction more applicable. Concretely, these stimuli
should blend in a given virtual environment, and thus, are not rec-
ognized by the users as stimuli. Therefore, we developed stimuli
in form of virtual butterflies with different levels of shape realism
that elicit SSVEP responses through flickering or flapping wings.
Flapping wings can work similar to GSS [7] or spinning icons [43]
as they change their angular size while being focused by the user.
As prior work hints towards a connection between visual comfort
and classification accuracy [7], we believe that especially in VR
it is important to find a suitable trade-off between classification
accuracy and visual appearance.

3 GENERAL APPROACH
In this section, we introduce our approach to well-suited and re-
alistically shaped stimuli for SSVEP-based interaction in VR. We
first extracted nine commonly used frequencies from the literature.
Out of these nine frequencies, we determined three frequencies
with the highest detection accuracy in our first study with twelve
participants. We used these three frequencies in our second study
to train a classifier (i.e., SVM) to detect SSVEP responses elicited
through our stimuli in form of butterflies with different levels of
shape realism and different wing animations – with flickering or
flapping wings. Further, we obtained subjective feedback on per-
ceived realism, movement, visual pleasantness, and ability to focus
on the stimuli. During our studies, we followed the local ethical
process.

Identification of Suitable Frequencies. To design our butterfly-
shaped stimuli, we first obtained a frequency range that is fre-
quently used for SSVEP responses. Therefore, we conducted a brief
literature review. We queried the ACM Digital Library on May 25,
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Table 1: Overview on frequencies used in the retrieved literature using the query "Brain-Computer Interface" AND "SSVEP" on
the ACM Digital Library. A * indicates increments of 2 Hz and ** indicate increments of 0.2 Hz in a range of frequencies.

Stimulus Type Frequency Range Stimulus Device Reference

Flickering Rectangles 5, 6, 7.5, 8.33, 8.57, 10, 12, 12.5, 15, 6-20 Hz Display [20, 21, 23, 47]
Flickering Squares 6.0, 6.25, 6.67, 7.50, 7.57, 8, 8.6, 9, 10 Hz Display [30, 39, 44, 45]
Flickering Circles 6, 6.67, 7.5, 8.57, 10, 12, 15 Hz Display [9, 13–15]
Flickering Checkerboard 8, 9, 11, 12, 15, 20, 25 Hz Display [34, 63]
Flickering Square 6.25, 8, 9, 10 Hz Smartphone [40]
LED 5.783, 6.75, 8.65, 11-19, 30-48 Hz* LEDs [18, 53, 54]
Flickering Squares 8-15.8 Hz** VR-HMD [32]
Flickering VR Objects 42, 43, 44, 45 Hz VR-HMD [2]
Flickering Rectangles 4, 6, 8, 9, 10, 11, 12, 13, 15 Hz AR-HMD [58, 59]

2021, with the following search terms “Brain-Computer Interface”
AND “SSVEP”. We retrieved 92 items from the library. From the
results, we selected publications that investigated SSVEP-based in-
teraction and extracted the frequencies used in the experiments. We
ignored literature that used BCIs with other interaction paradigms
than SSVEP (e.g., P300 [42]). Further, we solely considered research-
articless, short-paperss, abstracts, and surveys. We excluded litera-
ture that did not report on the frequencies used in their experiments.
In Table 1, we present an overview of the gathered frequency ranges
together with further details like stimulus type and devices used
for stimulus emission.

Study I: Selection of Suitable Frequencies. We selected a set of 72
unique frequencies which were used in previous SSVEP studies (see
Table 1). Then, we counted the occurrences of all used frequencies
and removed all frequencies which occurred fewer than three times.
Furthermore, we removed decimal frequencies to avoid interpola-
tion between two frequencies. This resulted in the following nine
frequencies: 6Hz, 8Hz, 9Hz, 10Hz, 11Hz, 12Hz, 13Hz, 14Hz, 15Hz.
In Study I, our participants viewed squares flickering at each of
these frequencies while we measured cortical activity at the occipi-
tal lobe. Twelve participants took part in this study. After the study,
we compared the classification results of each possible frequency
triplet. After extracting the triplet with the highest classification
accuracy, we continued with our second study in which we ma-
nipulated the appearance and animation of our butterfly-shaped
stimuli using this frequency triplet.

Study II: Evaluation of Accuracy an Appearance. We developed
three SSVEP stimuli in the form of butterflies with increasing re-
alism regarding their shape and stimulus type (see Figure 1). We
intended to increase the realism of the shapes by alternating their
wings from square wings (i.e., low shape realism), similar to the
square used in Study I or previous work [24, 49, 51], over round
wings (i.e., moderate shape realism) to real wing contours (i.e., high
shape realism) of a real butterfly. The use of a butterfly was inspired
by previous research that successfully evaluated navigation using
SSVEP butterflies in a non-VR environment [27]. Butterflies have
relatively large wings compared to their body. These large wings
allowed us to create a large stimulus area to excite the retina of an
observer. To elicit SSVEP responses through the natural movement
of the butterfly, we animated the wings to move up and down at
specific frequencies, and thereby, changing their angular size. This

elicits SSVEP response similar to spinning icons [43] or GSS stim-
uli [7]. Our butterflies flapped their wings from 90◦ upwards to 90◦
downward and back at a specific frequency.

3.1 Study Apparatus
For both studies, we developed a VR app in Unity3D. The VR app
placed the user in a dark room with gray walls. Thereby, we could
reduce the influence of external factors and focus on the evaluation
of the tested stimuli. The VR app was configured in Unity3D to
display either a square stimulus or the butterflies with different
levels of shape realism and wing animation. In Study I, the app
displayed a black andwhite flickering square measuring 0.4m×0.4m
at a 1m distance (see Figure 2). The square was colored white with
a black frame. The white area covered 1.162m2. For reference, 1m
in VR corresponds to 1m in reality. In Study II, the app displayed
our butterflies once at a time (see Figure 1). One wing of our low,
moderate, and high shape realism butterflies encompassed a white
area of 1.16m2, 0.88m2, and 0.60m2 respectively. From the center
of our butterflies to the farthest point on the wings we measured
a distance of 48cm, 40cm, and 33.6cm for our low, moderate, and
high shape realism butterflies. To run the VR app, we connected an
Oculus Quest 2 to a PC via an Oculus Link cable. This allowed us to
operate the VR app from outside the VR-HMDwhile monitoring the
EEG signal (see Figure 2, left) and simultaneously the first-person
view of the participants (see Figure 2, right). In our setup, we had a
constant refresh rate of 72Hz. The stimulation signal was modeled
using a square wave in a custom shader for best performance. We
measured around 7.33lx illuminance per eye emitted by the HMD
using a photometer2 when showing a low shape realism butterfly
when it was rendered fully white and wings were spread to the
maximum (see Figure 1). When showing a moderate shape realism
and high shape realism butterfly, we measured 6.33lx and 5.67lx
respectively. As the maximum frequency was 15Hz in Study I, we
were certain that our stimuli were presented properly as the refresh
rate of our VR-HMD was about five times higher (72Hz) than 15Hz.
Additionally, we recorded the stimuli with an external highspeed
camera3 from within the VR-HMD. By checking the recording
frame by frame, we were certain that our stimuli were presented
properly.

We recorded the EEG signal using an OpenBCI Ganglion EEG
board since its electrodes can be easily integrated into VR headsets

2VOLTCRAFT LX-10 Photometer, range: 0 - 199900 lx
3Camera Model: ELP-USBFHD08S, max. frame rate: 720p@260 fps
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Figure 2: For our study apparatus, we use an Oculus Quest 2 VR-HMD and OpenBCI Ganglion EEG board. Left: A participant
wearing a VR-HMD focused a stimulus. Right: The same participant in VR focusing an a black and white flickering square.
while maintaining a signal recording quality comparable to medical-
grade devices [10]. The Ganglion operates with a 200Hz sampling
frequency and has 4 input channels. We used 2 out of the 4 available
channels to sample EEG signals. We placed the electrodes on the
occipital lobe of the participant at POz and Oz according to the
10-20 system [17]. We placed the ground electrode on the right
earlobe and the reference electrode on the left earlobe in Study I.
However, we changed the position of the reference electrode to Cz
since it improved the signal quality in Study II. We streamed the
EEG signal from the OpenBCI GUI to our VR app using the open
sound protocol (OSC)4. The VR app annotated the EEG signal with
the current stimulus frequency and stores it in comma-separated
files for later analysis and classifier training.

3.2 Data Processing and Machine Learning
Approach

In the following, we introduce our data pre-processing and machine
learning approach to classify the SSVEP responses elicited through
our stimuli.

3.2.1 Preprocessing and Classifier Training: Study I. We divided the
raw EEG signal into epochs relating to the displayed frequencies.
We average the raw EEG signal of the electrodes POz and Oz to
obtain a single signal. This is a knownmethod to denoise biomedical
signals [41]. One second of data was removed from the beginning
and end of each trial to remove signals that are unrelated to cortical
activity. Each epoch was high pass filtered at 0.1Hz and low pass
filtered at 40Hz. We have intentionally selected a cutoff at 40Hz
to include harmonic frequencies. Including additional harmonic
frequencies is known to increase the classification accuracy due to
the occurrence of more robust features [38]. We performed a Short-
time Fourier transform on two-second slices with an overlap of one
second. The obtained frequency bins per second were labeled with
the displayed SSVEP stimulus [6], representing the feature vectors
used to train a Support Vector Machine (SVM) [8]. We performed a
grid search to find the optimal hyperparameters for the test set [19].
We evaluate the classifier performance through cross-validation
with k = 10, where k − 1 folds were iteratively used for training
and the remaining fold was used for evaluation.

3.2.2 Preprocessing and Classifier Training: Study II. In Study II,
we recorded the EEG data while displaying our butterfly stimuli.

4Open Sound Control (OSC). www.opensoundcontrol.org, last checked on March 11,
2022

We obtained raw EEG recordings along with annotations with the
respective frequency of the stimuli. Then, we applied the following
pre-processing steps. First, we averaged the signal similar to Study
I (POz and Oz, Ref Cz, GND right earlobe) and created buckets with
200 samples each by using a sliding window approach with a step
size of one. As we repeated the stimuli exposure three times per
frequency, we separated the second block from the first and third
block to use it for testing. Next, we normalized each bucket using
zero-mean normalization and applied a band-pass filter from 0.1 to
40Hz. We then computed the Fast-Fourier Transform of each bucket.
As a result, we obtained a training set and test set of transformed
buckets for each frequency. We then trained our SVMs with the
training set and tested it on the test set.

4 STUDY I: SELECTION OF SUITABLE
FREQUENCIES

The goal of the first study was to determine a combination of
best-performing frequencies identified by previous research. In this
study, participants were viewing abstract SSVEP stimuli using the
frequencies from the literature while we recorded cortical activity.

4.1 Study Design
We conducted a within-subjects laboratory user study in VR using
our previously described apparatus to compare the most reported
frequencies (see Subsection 3.1). In this study, we showed a square
stimulus in the center of the participants’ field of view, flickering
between black and white with different frequencies. Our only in-
dependent variable was frequency with the nine levels (6Hz, 8Hz,
9Hz, 10Hz, 11Hz, 12Hz, 13Hz, 14Hz, and 15Hz). Each frequency was
displayed three times to the participants; each for ten seconds with
additional prior five seconds in which no stimuli was visible. Par-
ticipants received a short break after each block. The frequencies
displayed in each block were counterbalanced using a Latin square
design. During each trial, we measured the participants’ cortical
activity as described in Subsection 3.1. This results in an overall
data collection of 30 seconds per participant and per frequency. In
our analysis, we focused on the selection of a triplet yielding the
highest detection accuracy. We have selected an overall number
of three frequencies since previous research found this number of
frequencies suitable for interaction [27]. This study addresses the
following research question:
RQ1: Which triplet combination of the nine frequencies provide

the best detection accuracy for SSVEP in VR?

www.opensoundcontrol.org
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Figure 3: Confusion matrices of the three frequencies yielding the highest accuracies. Left: Classification using 6, 8, and 10Hz.
Middle: Classification using 8, 10, and 13Hz. Right: Classification using 8, 9, and 10Hz.

4.2 Procedure
Participants were introduced to the purpose and procedure of the
experiment at the beginning of the study. We asked participants if
they are affected by neurological disorders (e.g., epilepsy) to ensure
participation without risk. Then, we asked participants to fill out a
demographics questionnaire. Next, we started to set up the devices
used in our experiment. First, we helped participants to mount
the passive gold cup electrodes on their heads (see Subsection 3.1).
We conducted several measures to verify the correctness of our
data collection. We ensured that the impedance of each electrode
is lower than 25kOhm throughout the experiment. We asked par-
ticipants to close their eyes to verify measuring the visual cortex
by observing spikes in the alpha band. Then, we stimulated the
participants with three test frequencies (i.e., 7Hz, 8Hz, and 12Hz)
through a 240Hz LED display5. We chose these frequencies for
initial testing as they worked well during the development process.
Through the OpenBCI GUI, we observed the signal in the frequency
domain to assure the correct SSVEP responses. We continued with
helping the participants mount the VR-HMD when responses to all
three frequencies were visible. We checked the impedance again
after mounting the HMD. If the impedance remained the same, we
stimulated the participants in VR with our three test frequencies
and checked again the responses to the stimuli in the frequency
domain. We continued with the data recording described in Sub-
section 4.1 when the verification steps were accomplished. Each
participant took around 30 minutes to finish the study.

4.3 Participants
We recruited 12 volunteers (8 male, 4 female, 0 other), aged be-
tween 23 and 33 years (M = 28.3, SD = 3.3). Three participants had
corrected-to-normal vision and one participant reported colorblind-
ness. None of the participants stated any neurological disorders
and every participant assured us to not be affected by epilepsy.
Participants were asked to rate their experience with VR on a 7-
point Likert scale (1: no experience; 7: expert-level experience).
Most participants stated that they were familiar with VR (Md = 4.5,
IQR = 2.5).

4.4 Classification Results
We assessed the classification accuracy for every possible combi-
nation of three frequencies that we found in the literature. This

5Acer LED Display. https://www.acer.com/ac/en/US/content/predator-
series/predatorxb2, last checked March 11, 2022.

Table 2: The five frequency triplets achieving the highest ac-
curacy.

Frequencies (in Hz) Accuracy Precision Recall F1 Score

(6, 8, 10) 83% .80 .80 .80
(8, 10, 13) 83% .80 .80 .80
(8, 9, 10) 82% .79 .78 .78
(8, 10, 12) 82% .78 .78 .78
(6, 8, 14) 82% .81 .81 .81

resulted in 84 distinct frequency combinations. We applied the
classification procedure described in Subsection 3.2 separately on
each participant by training and evaluating a Support Vector Ma-
chine (SVM). We averaged the resulting performance metrics of
each classifier and for each frequency combination to obtain the
best performing frequencies. On average, we received 106 feature
vectors per frequency combination and per participant for training
the SVMs. Each feature vector included 40 features (i.e., one for
each frequency power bin). A grid search [19] suggested a radial
basis function kernel and a regularization parameter of C = 2 for
evaluation.

We calculate the precision, recall, and F1 scores as performance
metrics for each participant. In addition, we calculate the accuracy
as the number of correct predictions divided by the number of
total predictions. We multiplied the accuracies by 100 to obtain
percentages. We then calculated the accuracy, precision, recall, and
F1 scores for each participant and for each frequency triplet. We
then averaged the accuracy, precision, recall, and F1 scores over all
participants to obtain four single performance metrics. The accu-
racy ranged between 67% (i.e., the lowest accuracy was achieved
by {6, 9, 12}) and 83% (i.e., the highest accuracy was achieved by
{6, 8, 10}). Table 2 summarizes the five best performing frequency
triplets along with their accuracies. Figure 3 shows the confusion
matrices of the three best performing frequency triplets.

We observed the highest classification accuracy for {6, 8, 10}
with an accuracy of 83% (F1 = .80), followed by {8, 10, 13} with an
accuracy of 82% (F1 = .80), and {8, 9, 10} with an accuracy of 82%
(F1 = .78). Overall, high accuracies were achieved for all frequency
triplets. An exemplary spectrogram of one participant (P7) shows
the distinct pattern of the elicited SSVEP responses in Study I (see
Figure 4).

4.5 Discussion
We conducted Study I to obtain a set of SSVEP frequencies for reli-
able classification using machine learning. Therefore, participants

https://www.acer.com/ac/en/US/content/predator-series/predatorxb2
https://www.acer.com/ac/en/US/content/predator-series/predatorxb2
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focused on black and white flickering squares in VR. We used nine
common frequencies selected from related work while we recorded
cortical data. Afterward, we examined the classification accuracy
by evaluating all possible frequency triplets.

Our results show that all frequency triplets provide sufficient
accuracy over the expected chance level, where our reported accu-
racies are similar to values reported by past research [6]. However,
a particular difference in accuracy exists between triplets with low
accuracy (e.g., {6, 9, 12} reaching 66%) and triplets with high accu-
racy (e.g., {6, 8, 10} reaching 83%). We noticed that high-scoring
frequency triplets have a large number of harmonics in the feature
space (i.e., 0.1Hz – 40Hz). Previous work stated that classification
accuracy improves when non-conflicting harmonics are present in
the data set [38]. However, this comes at the cost of reducing the
number of usable frequencies. For example, 6Hz and 12Hz share
harmonics multiple times. This explains why triplets such as {6, 9,
12} showed a poor performance. Although the best triplets conflict
with harmonics as well with higher frequencies, they still provide
enough distinct features resulting in a more robust classification.
Reaching high classification accuracies is a major objective of BCI
research to maintain a solid interaction experience for the user.
Hence, we decided to continue with the {6, 8, 10} frequency triplet.

5 STUDY II: EVALUATION OF APPEARANCE
AND ACCURACY

In our second study, we continued with the three frequencies which
we could classify most accurately in Study I. The goal of the second
study was to investigate the influence of factors that introduce
more realism to the used stimuli. Inspired by previous work [27],
we selected a butterfly to elicit SSVEP responses. We evaluated
butterflies with different shapes. Here, we had three levels of shape
realism and different stimulus types which are flickering or flapping
wings.

5.1 Study Design
To investigate the influence of different levels of shape realism on
SSVEP stimuli, we conducted a within-subjects laboratory user
study in VR using our described apparatus (see Subsection 3.1). We
used a repeated-measures design to examine the influence of two
independent variables on the accuracy of the visually evoked poten-
tial. Our independent variables were shape realism with three levels
(low vs.moderate vs. high) and stimulus type with two levels (flicker
vs. flap), resulting in overall six conditions. In each condition, we
tested three different frequencies (6Hz vs. 8Hz vs. 10Hz). The con-
ditions were counterbalanced using a Latin-square design. Within
each condition, we recorded three trials of each frequency. During
each trial, we measured participants’ EEG response as described in
Subsection 3.1.

We posed the following research question for Study II:

RQ2: Which combination of shape realism and stimulus type re-
sults in the highest classification accuracy and which one is
perceived as most realistic?

Given the purpose of our study, we posed the following hypotheses:

H1 : We expect that the stimulus type flicker leads to better
classification accuracy than flap because the state change

for flicker is binary while flap is a continuous motion that
contains mostly intermediate states while the extremes are
visible for only a short time.

H2 : We hypothesize that a higher shape realism results in
participants perceiving the stimulus as more realistic.

5.2 Procedure and Participants
In the beginning, we introduced participants to the purpose and
procedure of our second study. Thereafter, we asked participants for
their consent to the study conditions.We started the study by setting
up the devices involved (see Subsection 3.1). Then, we ensured
that the impedance of each electrode was lower than 25kOhm and
assured that we obtain a clear EEG signal similar to the procedure
in Subsection 4.2. If everything looked as expected, we continued
with the main part of the study.

For each participant, we tested the six conditions with different
levels of shape realism and stimulus type in our VR app to obtain
training data and evaluate the classification performance (see Fig-
ure 1). We configured our VR app to display the butterfly stimuli of
each condition in blocks of 10 seconds for each of the three selected
frequencies from our first study. Before each block, there was a
break with a duration of 5 seconds. This was repeated three times
to obtain a 30 seconds recording of EEG data for each frequency per
stimulus. We stored the raw EEG signal in comma-separated files in-
cluding annotations of the displayed frequency. After each trial, we
asked participants to rate 7-point Likert statements to assess their
subjective perception of the stimulus and gathered informal feed-
back of the participants in semi-structured brief interviews. Overall,
the study took 45 minutes on average. We recruited the same 12
participants that also participated in Study I (see Subsection 4.3).

5.3 Results
For descriptive statistics, we report mean (M), median (Md), and
interquartile-range (IQR). Effect sizes of performed statistic tests
are reported with r (r=0.1 small effect, r=0.3 medium effect, and
r=0.5 large effect).

5.3.1 Effects on Classification Accuracy. For classification accuracy
(in percentage), we report the F1 scores of the classifiers as the
harmonic means of recall and precision. We observed that recall
and precision performed similarly across conditions, and thus, de-
cided that the F1 score is a good measure to reflect on both. In the
following, we compare the F1 scores for the trained classifiers, to
understand how they are affected by our independent variables. For
each participant, we trained one classifier for each condition (shape
realism x stimulus type) and took their F1 scores for our analysis.
We adjusted the p-values with a Bonferroni correction considering
all comparisons. For adequate statistical power, we investigated our
independent variables separately (i.e., fewer overall comparisons
result in less p-adjustment).

Shape Realism. We consider the effect of shape realism on the F1
score for each level of stimulus type individually (see Figure 5). For
flicker, the median (interquartile-range) F1 scores for the levels of
shape realism are (in desc. order): flicker+low=78.7% (IQR=17.6%),
flicker+moderate=71.6% (IQR=31.4%), and flicker+high=67.5% (IQR=
29.3%). A Friedman test revealed a significant effect (χ2(2)=7.39,
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Figure 4: Spectrogram of P7 in Study I. Left: Low frequencies (8, 9, 10Hz). Middle: medium frequencies from (10, 11, 12Hz). Right:
High frequencies (13, 14, 15Hz). When the participant was exposed to a 10s stimulus one can see the higher amplitude of the
stimulus frequencies and their harmonics. In between, when now stimulus was applied in the 5s break, gaps are visible.

**

0

25

50

75

100

Low Moderate High

F1
 S

co
re

 (i
n 

%
)

Comparison of Shape Realism for the Different Stimulus Types

Flicker Flap

***

0

25

50

75

100

Flicker Flap

F1
 S

co
re

 (i
n 

%
)

Comparison of Stimulus Types

Figure 5: Comparison of recall rates. Left: comparison of the different levels of shape realism for each of the two stimulus types.
Right: comparison between the investigated stimulus types: flicker and flap. The significance levels are: *(<0.05), **(<0.01), and
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p=0.025, N=12). A post-hoc test using Wilcoxon Signed-rank with
Bonferroni correction showed a significant difference between
flicker+low and flicker+moderate (W=539, Z=3.24, p=0.005, r=0.38),
meaning low works significantly better than moderate for flicker.
For flap, the median (interquartile-range) recall rates for the lev-
els of shape realism are (in desc. order): flap+low=70.0% (IQR=29.4%),
flap+high=60.1% (IQR=21.0%), andflap+moderate=57.7% (IQR=17.8%).
A Friedman test did not reveal a significant effect (χ2(2)=1.06,
p=0.590, N=12).

Stimulus Type. We consider the effect of stimulus type on the F1
score. The median (interquartile-range) recall rates for the different
levels of stimulus types are (in descending order): flicker=72.1%
(IQR=27.4%) and flap=62.0% (IQR=22.8%) (see Figure 5). As we do
not assume normality and compare two matched groups within-
subjects, we directly performed a Wilcoxon Signed-rank test. Here
we found a significant effect of stimulus type on recall rate (W=4229,
Z=3.94, p<0.001, r=0.27). This indicates that flicker has significantly
better performance than flap.

5.3.2 Subjective Ratings. After each condition (shape realism x
stimulus), we asked participants to rate two statements with 7-point
Likert items (1=strongly disagree, 7=strongly agree). All ratings are
shown in Figure 6.

Shape Realism. For the first statement, “the stimulus shape looked
realistic,” the ratings for the conditions are reported in Figure 6.

Table 3: Pairwise comparisons of conditions concerning sub-
jective responses concerning shape realism.

Comparison W Z p r

flicker+low vs. flicker+moderate 6 -2.43 0.047 0.50
flicker+low vs. flicker+high 1.5 -2.96 0.004 0.60
flicker+moderate vs. flicker+high 2.5 -2.76 0.015 0.56

flap+low vs. flap+moderate 5 -2.26 0.076 0.46
flap+low vs. flap+high 0 -3.09 0.001 0.63
flap+moderate vs. flap+high 0 -2.98 0.006 0.61

A Friedman test revealed a significant effect of condition on rat-
ing (χ2(5)=35.49, p<0.001, N=12). A post-hoc test using Wilcoxon
Signed-rank with Bonferroni correction showed significant differ-
ences (see Table 3).

NaturalMovement. For the second statement, “the stimulusmove-
ment looked natural,” the ratings for the conditions are reported in
Figure 6. Grouped by the stimulus type, the median (interquartile-
range) ratings are (in descending order): flicker=2 (IQR=3) and
flap=3 (IQR=3). A post-hoc test using Wilcoxon Signed-rank with
Bonferroni correction showed a significant difference between
flicker and flap (W=129.5, Z=−2.07, p=0.037, r=0.24), meaning the
movement of flap looked significantly more realistic than flicker.

5.3.3 Participants’ Feedback. Besides the statement ratings on re-
alism, movement, we gathered informal feedback from our par-
ticipants after each trial. We used thematic analysis to group the
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feedback of the participants. Two researchers coded statements
independently resulting in 82 open codes. Next, we employed an
affinity diagram [16] of the open codes and organized the codes
into groups, which were then further refined into themes using an
online whiteboard6.

General Feedback. Participants described the butterfly with low
ormoderate shape realism as glaring, overwhelming, or exhausting:
"This was exhausting [...] it just blinked and did not move. I stared
into whiteness." (P9 on moderate shape realism, flickering butterfly).
Regarding the shape of the butterfly, participants stated that the
two wings made were distracting and made it difficult to focus on
the stimulus: "It looked like a TV. And two different sides to focus on
are difficult because you don’t know where to focus. When I focused
on one side the other side was distracting me" (P5, on low shape
realism, flickering butterfly). Also, the participants missed textures
or colors on the wings of the butterflies, "Colorful wings would be
cool! Then I wouldn’t even recognize this as a stimulus." (P8 on high
shape realism, flapping butterfly) and P6 commented on a high
shape realism, flapping butterfly: "This was the best stimulus so far.
I had no problems focusing on the stimulus and the movement felt
like the natural movement of a butterfly."

Flickering. On the one hand, our participants stated that flick-
ering was easier and less chaotic to focus on: "This time I looked
more at the wings, it was easier to focus on [the flickering wings]
than the moving wings[...]." (P1, on high shape realism, flickering
butterfly). On the other hand, they stated that flickering wings are
not realistic: "Flickering is easier to focus but not that realistic" (P8
on a moderate shape realism, flickering butterfly).

Flapping. On the one hand, the participants stated that the wings
flapped too fast: "It looked more like a flicker book to me." (P3 on a
low shape realism, flapping butterfly). Participants used the butter-
flies’ body as a reference point to focus when they were flapping
their wings: "[...] When the wings were in motion the body was easier
to focus." (P1, on high shape realism, flickering butterfly). Some
participants perceived the flapping wings as less realistic and stated
that the wing motion negatively influenced the focus on the but-
terfly. On the other hand, the participants liked the flapping wings
and stated that the stimulus was less intense than flickering wings:
"The flickering, especially at high frequencies, was unpleasant. This
was not the case when the wings were flapping." (P3 on a low shape
realism, flickering butterfly) and "The realistic, flapping [butterfly]
was the most pleasant. Through the flap, it is more pleasant in general
and not as intense [as flickering]." (P2, on high shape realism, flap-
ping butterfly). One participant stated that through a more realistic
shape the flapping motion appeared more realistic: "[...] the shape
of the wings appeared more realistic when they were in motion [...]."
(P1 on moderate shape realism, flapping butterfly).

Focus. Several participants stated that the butterfly’s body helped
them keep the focus on the stimuli while the wings were flapping.
They stated that the fixed body was easier to focus on than the
moving parts: "It was easier to focus! I could concentrate on the
[butterfly’s] body and the stimulus was around it." (P2, on moderate
shape realism, flapping butterfly). Also, the form of thewings helped

6Miro. https://miro.com, last retrieved March 11, 2022

the participants to maintain focus when the butterfly’s wings were
flickering: "The round formmakes it easier to focus a circle [...]." (P1 on
moderate shape realism, flickering butterfly). The realistic contours
were perceived similarly: "Through its contours, the stimulus was
better to focus." (P1, on high shape realism, flickering butterfly).
In contrast to this, participants stated to have problems focusing
on the butterflies because they were more realistic: "The stimulus
resembles the butterfly flying and I focused on the shape and details
of the butterfly. I did not really know where to focus the stimulus." (P8,
on moderate shape realism, flapping butterfly). Several participants
stated that the butterflies with realistic contours were distracting
them because they investigated the wings: "Through the complex
form, I tended to investigate it [...]. It was difficult to keep the focus
centered on the butterfly because I felt urged to scan the butterfly with
my eyes." (P1, high shape realism, flickering butterfly).

Levels of Shape Realism. The shape realism was perceived differ-
ently by our participants. The butterfly with a low shape realism
was perceived as "machine-like" (P9 on a low shape realism, flapping
butterfly), it resembled an "[...] old TV with an antenna." (P1 on a low
shape realism, flickering butterfly) or it would fit in video games
like "Minecraft" (P8 on a low shape realism, flickering butterfly).
Unlike most participants, one appreciated the butterfly with round
wings the most: "I think that the round wings looked more realistic
than the wings with real contours. I find them more pleasant" (P9).
Our participants stated several times that they liked a high level
of shape realism: "The shape of the wings looks realistic here. But I
missed flapping wings. This would appear more realistic to me." (P8,
on high shape realism, flickering butterfly). After perceiving the
high shape realism butterfly with flapping wings, P8 added "I think
this looks like a butterfly! The shape matches and it’s flapping."

5.4 Discussion
We assessed the different levels of shape realism and stimulus type of
different butterfly configurations in terms of classification accuracy
and subjective appearance in Study II. In the following, we discuss
the results.

Classification Accuracy. We found that flickering wings resulted
in a significantly higher F1 score. This shows that flickering outper-
forms flapping wings in terms of classification accuracy. Therefore,
we can accept our hypothesis H1. We argue that while wings are
flapping, the participants could see the white area of the wings
growing and shrinking similar to GSS [7] or spinning stimuli [43].
This results in a less effective stimulus than black and white flick-
ering wings and is in line with previous observations [7].

When we analyzed the influence of the shape on the classifica-
tion accuracy, we observed a higher median for a flapping butterfly
with high shape realism than for a butterfly with moderate shape
realism even though it comprises a smaller white wing area. There
is a tendency towards the claims from the literature that suggest
that stimuli preferred by users perform better in terms of classi-
fication accuracy [7]. But we could not show an effect here. Still,
a flapping low shape realism butterfly performed best. Here, we
must acknowledge that it had the largest wing area. For flickering
wings, we observed different results. Here, a flickering stimulus

https://miro.com
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Figure 6: Subjective ratings with 7-point Likert-items for each condition tested. Left: subjective ratings for the shape realism
of the butterfly shape. Right: subjective ratings for the naturalness of the butterfly movement.
with low shape realism performed significantly better than a mod-
erate butterfly. This could be attributed to the smaller white area
of the round wings. Further, our participants reported that they
scanned interestingly shaped wings and therefore had some diffi-
culty maintaining focus. Participants reported that focusing on the
body of the butterfly with round wings was easier due to the gap
between its body and its wings. Therefore, the stimulating wings
might not be in full focus of the participants. This could result in
less classification accuracy. Focusing on details of flapping wings
might be difficult for users as they move quickly. This could be a
benefit of flapping stimuli as users do not tend to focus on details,
instead, they look at the entire stimulus. For flapping wings, we
did not find any significant differences. We conclude that when
designing stimuli it is important to consider how users perceive
the difficulty to keep their focus on the stimuli. Especially during
long-term interaction, this could have a negative impact.

Shape Realism. In terms of appearance, our participants rated the
flickering butterflies with realistic contours to appear significantly
more realistic than the butterflies with low or moderate shape re-
alism. We observed the same for butterflies with flapping wings.
Therefore, we accept H2.

Flickering vs. Flapping. Subjectively, our participants perceived
the flapping butterflies as significantly more natural than butterflies
with flickering wings. However, flickering stimuli resulted in higher
classification accuracy. Here, we face a trade-off in terms of clas-
sification reliability and stimulus appearance. In VR, realism is an
important factor for users to immerse in virtual worlds. Therefore,
we argue that in some cases it is acceptable to employ stimuli that
appear more realistic, in our case flapping wings, and at the same
time sacrifice a certain percentage of classification accuracy. For ex-
ample, in a game an animal that elicits SSVEP responses could look
at the player but if the detection fails the player would not notice a
big difference but overall the game would be more interactive. Also,
long-term interaction might benefit from visual pleasant stimuli to
mitigate adverse side effects on the user like mental load [64] or
visual fatigue [36, 37].

When we compared the classification accuracy of our stimuli
that were preferred by our participants in terms of shape realism
and stimulus type, we did not observe mixed classification accuracy
of stimuli that were rated more visually pleasing than others. We
could not show that a visually more pleasant stimulus positively

influences the classification accuracy of SSVEP stimuli as suggested
by the literature [7] across all levels of shape realism. Still, a high
shape realism butterfly achieved a slightly higher classification
accuracy than a moderate one even with a smaller stimulus area
that excites the users’ retinas. Here, we suggest further investigating
factors of our butterfly stimuli such as the shape, colors as well as
textures, or wing speed. Overall, our stimuli that appeared more
pleasant to our participants still achieved satisfactory classification
accuracies applicable in a wide array of apps.

6 GENERAL DISCUSSION
In the following, we discuss the results from our studies along with
limitations and future research suggestions.

Trade-off Between Detection Accuracy vs. Stimuli Appearance. Our
findings suggest that there is a trade-off between the performance
and the appearance of our stimuli. This trade-off should be consid-
ered when integrating such stimuli in VR. If the interaction must
be robust in terms of classification accuracy, a flickering stimulus
might be well-suited. When appearance or proper CGI is more im-
portant than performance, stimuli with matching animation, in our
case flapping wings, could be integrated into VR as they blend into
the surrounding environment through a plausible animation. This
would help to preserve the narrative of the virtual experience. We
obtained promising feedback from our participants, who stated that
more realism might further disguise the fact that our butterflies are
SSVEP-eliciting stimuli. We conclude that our findings are transfer-
able findings to other real or fictional animals with wings including
but not limited to birds, flies, bees, or dragons. Beyond these, it
is not clear how generalizable our findings are to other objects.
However, a wide array of research demonstrates the potential of
SSVEP for non-flickering stimuli [2, 43], including ours, suggesting
great potential for blending SSVEP stimuli in VR in general.

Level of Detail and Perception. Not all VR apps rely on complex
graphic pipelines, photo-realistic details, or a high level of detail.
Therefore, we argue that stimuli with a less detailed shape, such as
the butterfly with round wings, could serve as SSVEP stimuli in VR,
which are built of low polymeshes with aminimal number of details.
Overall, our participants rated the butterfly with real wing contours
as most realistic but also stated that butterflies with round wings
could have use cases. Here, one interesting statement regarding the
butterfly with square wings caught our attention. For games such as
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Minecraft, a butterfly would blend into the environment well. So, we
argue that the expectation of VR users can influence the perception
of the SSVEP stimuli if a plausibility illusion is created [46]. This
could be further investigated by embedding different stimuli designs
into VR with varying graphical properties (e.g., colors and textures).
Hence, our findings are valuable in terms of the evaluated levels of
shape realism. We believe that it is important to not entirely focus
research on the most realistic SSVEP stimuli only but rather on a
variety of different levels of each dimension that the SSVEP design
space has to offer. There are many parameters that can be adjusted
when using such SSVEP stimuli in VR. As we did not investigate
the whole design space in this paper, we suggest that our work is
an initial starting point that can serve as a basis for future research.
Here, the whole spectrum of shapes, different animals or other
non-living objects, textures, and colors as well as more types of
animations span a humongous design space that needs further
investigation.

6.1 Limitations
We acknowledge various limitations that could have affected our
evaluation. First, our stimuli shaped as butterflies are not applicable
in every available VR scenario. For example, users would not expect
butterflies in an urban setting. This is a limitation to our specific
design. To overcome this, creative ideas of VR developers and de-
signers are needed.We outline some inspirational ideas in the future
work section. Further, the detection accuracies and the subjective
perception of the stimuli could be influenced by the surrounding VR
environment. We placed the users in a dark room. This reduced the
influence on external factors and we could focus on the evaluation
of the presented stimuli. We argue that the detection accuracies
could differ when our stimuli are deployed in more complex VR
settings. For example, user movement and different light condi-
tions can influence the interaction with our stimuli. Further, the
subjective perception of the stimuli could change. Future research
could investigate influencing factors when deploying such stimuli
in an end-user VR app. Next, we did not rely on VR-HMDs with
integrated eye-tracking. Therefore, we cannot quantify which parts
of the butterflies were mostly focused on by the participants and
which were not. Using eye-tracking could reveal which areas of our
stimuli were focused on the most by our participants. This would
help to better understand which features of the stimuli attract the
attention of VR users.

6.2 Future Work
We showed that flapping wings could effectively be used as an
SSVEP stimulus in VR. This motivates us to outline promising
research objectives regarding SSVEP in VR.

The size of our butterflies was larger than butterflies in real-
ity. This was necessary to ensure that SSVEP responses are large
enough to be measured by our EEG device. Future work could in-
vestigate to what degree the stimuli can be reduced in size while
SSVEP responses can be still measured. The decline of the detection
accuracy could be attributed to the decreasing wing size of our
butterflies when increasing shape realism or the perception of the
participants as suggested by the literature [7]. Future evaluations
could take this and other variables into account like stimuli distance

or moving stimuli as butterflies tend to fly in jagged trajectories.
Shrinking the butterflies to a size users are familiar with can further
enhance virtual experiences. Also, swarms of butterflies could be
investigated.

With our stimuli, we plan to conduct a study that investigates
them in a realistic VR environment. We plan to develop a VR game
that uses our stimuli to let the player engage in a playful activity.
This allows us to evaluate our stimuli in a real-world scenario. As
our participants wished for colorful butterflies, we would intro-
duce colored butterflies and repeat our main study. In the future,
different wing patterns will be investigated, similar to pattern re-
versal stimuli [66]. Our participants stated that the wing motion
was sometimes too fast. Here, we could slow down the wings and
use a combination of flickering and flapping wings to elicit SSVEP
responses while maintaining realistic wing movement.

SSVEP stimuli that allow triggering events or determine the
user’s focus in future VR games could be generated through the
environment itself. One could consider a car driving through a
forest. When the sun is low, the light goes through the forest and
is blocked by the trees. Depending on the car’s velocity, the light is
visible only for a specific moment, resulting in a flickering stimulus.
This can be used to trigger events when users focus on a specific area
of the environment. An equivalent for room-scale approaches could
be a lamp behind a fan. The angular velocity of the fan together with
the fan’s wings that block the light from the lamp creates a flickering
SSVEP stimulus. VR developers could use such mechanisms to
ensure that the user focuses on objects of interest.

7 CONCLUSION
In this paper, we investigated SSVEP stimuli in VR in the form of
butterflies with three levels of realism. To elicit SSVEP responses,
we developed two stimuli types: flickering and flapping wings. To
assess their suitability for interaction in VR, we first extracted three
suitable frequencies through a brief literature survey and subse-
quent prestudy. We conducted our main study with the three best
performing frequencies to obtain training data to train classifiers
and to assess the subjective realism of our stimuli. We showed that
our stimuli design in the form of a realistic butterfly with flapping
wings can be used for SSVEP-based interaction in VR, but is still
outperformed by a flickering stimulus. Hence, we argue that the
stimuli should be selected based on the VR scenario. If performance
is required, stimuli with lower levels of realism should be employed.
If stimuli should fit the VR environment and robustness can be
sacrificed, then higher levels of realism can be used to enhance the
VR experience.
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