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Figure 1: Implementation of our web application to demystify deep learning. Best seen in color.

ABSTRACT
Deep learning has revolutionized machine learning, enhanc-
ing our ability to solve complex computational problems.
From image classification to speech recognition, the technol-
ogy can be beneficial in a broad range of scenarios. However,
the barrier to entry is quite high, especially when program-
ming skills are missing. In this paper, we present the devel-
opment of a learning application for beginners that is easy
to use, yet powerful enough to solve practical deep learning
problems. We followed the human-centered design approach
and conducted a technical evaluation to identify solvable
classification problems. In the future, we plan to conduct a
user study to evaluate our learning application online.
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1 INTRODUCTION
In recent years, deep learning has received considerable at-
tention, with many beginners interested in learning the tech-
nology. Continually decreasing computational costs have
made the technology practical and applicable to real-world
problems [6, 10, 13, 21]. Nowadays, deep learning empowers
users to address a broad range of problems, previously not
considered practically solvable, and often in a more effec-
tive manner than other machine learning approaches [4, 12].
This potential has sparked interest, resulting in non-experts
willing to learn the technology. However, understanding the
concepts that constitute deep learning can be challenging.
In general, there are two different motivations to deal

with deep learning: 1) to be able to develop deep-learning-
based systems, and 2) to understand the decisions of these
systems in everyday life [15]. If the latter is the motivation,
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people tend to have no technical background and are over-
whelmed when dealing with theoretical foundations of Arti-
ficial Neural Networks (ANN), which are the very essence
of deep learning. The connection between cause and effect
is especially difficult to grasp when dealing with ANN [19].
Fortunately, understanding the theory in complete detail is
not required to understand decision-making by intelligent
systems. Moreover, applying deep learning workflows and
solving practical problems relies heavily on experimentation.
Thus, experience and intuition are vital for mastering deep
learning. However, gaining this experience is challenging
for beginners. It is time-consuming and can be frustrating
because direct feedback is often missing. Furthermore, the
barrier of entry is quite high because it requires solid techni-
cal skills, such as knowing a programming language.

We believe that a visualization-based learning application
could lower the barrier of entry, empowering beginners to
understand deep learning without first mastering a program-
ming language. Previous work has unveiled the potential
of visualization-based approaches [19, 27]. For example, vi-
sual programming languages can help one to understand the
concepts of programming quickly [5, 25]. However, while
visualization-based learning approaches have proven useful
in many different scenarios, it remains unclear whether deep
learning beginners can benefit from them as well.

In this paper, we followed the human-centered design pro-
cess to develop an interactive visualization-based learning
application that aims to support deep learning beginners
during their first steps. Our goal is to develop an applica-
tion, powerful enough to solve practical problems. To do so,
we analyzed the existing work to understand the state-of-
the-art. We interviewed machine learning experts to find a
suitable scenario for beginners and conducted focus groups
to identify the application scope. Then, we developed a low-
fidelity prototype, did a cognitive walk-through, and imple-
mented our application. We finished with a technical evalua-
tion to identify solvable classification problems. Our work
contributes insights into the development of a user-centered
learning application for deep learning and the app itself.

2 RELATEDWORK
Understanding Decisions of ANN-based Systems
ANNs often are complex networks consisting of many ar-
tificial neurons and connections, making it incredibly chal-
lenging to assess their behavior. Even experts cannot always
predict how ANNs react in every possible situation, which
is hugely problematic (e.g., in safety-critical contexts [3]).
Hence, the question arises of how users without a technical
background can trust them? To address this issue, the field
of neural network interpretability has formed, following two

objectives: 1) finding out what features ANNs learn to rec-
ognize (feature visualization), and 2) what kind of data is
crucial in their decision process (feature attribution) [15].
Previous work proposes different visual analytic tools to

support model explanation, interpretation, and debugging
[8]. For example, Yosinski et al. suggest two different tools
[27], one to demonstrate activation of neurons using the
user’s webcam as input, and another one to see how the lay-
ers of the network learn certain features. One more tool that
explains what convolutional neural networks learn inter-
nally is ShapeShop [7]. It is an interactive experimentation
environment in which users can create a custom dataset
from simple shapes (circles, squares, and triangles), train a
model, and view the experiment results. Analytic tools often
use a method called activation maximization that focuses
on input that highly activates a specific neuron [16]. Similar
approaches are activation aggregation and neuron-influence
aggregation [9]. However, while these tools can help users to
understand the trained model better, they require fundamen-
tal knowledge about neural networks, making them better
suited for more advanced users.

Educational Applications for Deep Learning
Interactive visualizations can significantly increase begin-
ners’ understanding of program behavior [2]. They can be
integrated into learning experiences with explorable expla-
nations, for example [22]. To support beginners, we will use
explorable explanations in our application as well.
A few educational applications that help beginners un-

derstand deep learning exist. One example is Teachable Ma-
chine1 by Google Creative Labs. It is a simple application that
collects user-labeled images from thewebcam, trains a neural
network in the background, classifies the images in real-time,
and visualizes the results. Another example is Tensorflow
Playground2 by Smilkov et al. [19], which allows users to
experiment with neural networks via direct manipulation,
allowing them to build intuition about the relationships be-
tween artificial neurons, loss functions, learning rates, and
other concepts of machine learning. Nevertheless, while both
applications address beginners, they do not explain the deep
learning workflow. However, to apply learned concepts to
practical problems, users must not only understand how neu-
ral networks work, but must also understand the workflow
from finding a dataset to training and evaluating a model.

3 METHOD
In this paper, we develop a visualization-based learning appli-
cation that allows users to create custom datasets with little

1Teachable Machine. https://teachablemachine.withgoogle.com
2Tensorflow Playground. https://playground.tensorflow.org
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effort, assemble neural network architectures with a puzzle-
based interaction, train their models on a remote server, and
evaluate it using uploaded images. To develop this applica-
tion, we followed the human-centered design approach [11].
Hence, we started by defining the context of use, in which
we focused on users with no deep learning or programming
experience. To make the learning application available on
a broad range of devices and following previous work [19],
we developed it using standard web technologies. We inter-
viewed experts to choose a learning scenario that is well-
suited for novice users. Then, we conducted focus groups to
understand what matters to beginners. Next, we created a
low-fidelity (Lo-Fi) mock-up prototype and evaluated it with
the thinking-aloud method [14], which allowed us to gain
insights into the participants’ cognitive processes during a
walk-through of the interface. These insights helped us to
eliminate misleading design elements and identify possible
improvements. After that, we implemented a high-fidelity
prototype in the form of a web application. Last, we con-
ducted a technical evaluation to benchmark the performance
and feasibility of our implemented learning application.

4 DEVELOPING THE LEARNING APPLICATION
In the following, we describe all steps we undertook to de-
velop our application. These steps are based on methods
taken from the human-centered design approach [11].

Selecting a Learning Scenario with Expert Interviews
We conducted unstructured interviews with three experts
that offered recurring workshops/tutorials on machine learn-
ing at scientific conferences in HCI. All interviewed experts
agreed that classification tasks, more specifically image clas-
sification tasks (e.g., distinguishing between cats and dogs)
are a good starting point for beginners. These tasks are easy
to understand and provide many opportunities for interac-
tion. Furthermore, image hosting providers such as Flickr
provide free access to large datasets required as input for
many deep learning algorithms. Hence, we focus on image
classification tasks in our learning tool. Additionally, experts
highlighted that beginners need quick feedback, empowering
them to iterate over their solutions quickly and gain more
practical experience in a shorter time.
For the classification, we decided to use convolutional

neural networks (CNN) (a specific type of ANN) because they
are frequently used for image processing. These networks
consist of different building blocks (referred to as layers) that
can be connected in various ways. We thought that limiting
the available blocks could reduce the complexity of the task.

Defining the Application Scope with Focus Groups
After selecting a learning scenario suitable for beginners, we
conducted focus groups to define the applications’ scope. To

have uninfluenced opinions from deep learning beginners,
we carried out two focus groups. In the first group, two
intermediates and one expert participated (all three had more
than one year of experience). In contrast, the second group
was composed of three beginners (with less than six months
of experience). The six participants (2 female) were between
21 and 39 years old (mean: 26.0, standard deviation: 6.6).
We discussed the degree to which the app should guide

users, collecting the result as Likert-items (ranging from
1=no guidance, maximum self-experimentation to 10=max-
imum guidance, no self-experimentation). The answers to
this question were dependent on the participants’ experience
level. The beginners opted for more guidance (7, 6, 7). They
agreed that they had problems finding an entry point to the
field of deep learning because of its vastness. The experts
chose lower guidance (4, 4, 3). They explained that exper-
imentation is a big part of the deep learning workflow re-
quired to gain practical experience. Hence, we offer guidance
in the beginning, but later switch to self-experimentation.

Then, participants debated which phases of the deep learn-
ing workflow are most important. For this, they ordered the
following steps by priority: define the problem, gather data,
build model, train, evaluate, and deploy. All participants
agreed that the most critical phase is model building because
it is the core of the workflow. In the second place, they ranked
data gathering to build intuition about compositions and di-
mensions of datasets. This process takes time and should be
dealt with thoroughly in the application. Participants also
suggested to discard to deployment as is does not actively
contribute to understanding deep learning. Next, partici-
pants decided on a basic set of layer types, resulting in the
following layers: convolutional, pooling, flatten, and dense.
Furthermore, both focus groups’ participants suggested not
to deal with optimizers and activation functions.

Designing a Lo-Fi Prototype
Together with an experienced UX Designer, we created a
horizontal Lo-Fi prototype in Adobe XD3. The prototype is
shown in Figure 2. Each step of the deep learning workflow is
represented in a dedicated view. The views can be switched in
the top navigation bar of our application. In the following, we
explain all views in the order they appear in the navigation:

Problem. The first view the user sees is the problem view.
Here, the classification problem is illustrated using an ex-
plorable explanation [22], where two images are manually
classified into cats and dogs (see Figure 2a).

Data. The data view is split into two halves (see the pro-
totype view in the center of Figure 2c). Each half contains
a text field on top with a grid view of images underneath.

3Adobe XD. https://adobe.com/xd, last retrieved July 20, 2020

https://adobe.com/xd
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(a) Interactive introduction of classification problems.

(b) Navigation bar to switch between views.

(c) Adobe XD screenshot that shows some view prototypes.

Figure 2: Lo-Fi prototype development of our application in Adobe XD. Best seen in color.

These images can be loaded from the Flickr API by typing
search terms into the text field. Each half represents one of
the two classes that the classifier needs to distinguish. For
the images, we decided to use Flickr because its API enables
highly customizable image searches and already scaled-down
resolutions, which is useful for reducing loading times.

Preprocess. In this view, users can interact with a slider to
change the proportional composition of the train and test
subsets of the dataset. The slider range is reduced by ten
percent on both sides to ensure both datasets exist.

Model. The model view is where the network architecture
is defined. It consists of a layer panel on the left, which allows
the user to add different layer types to the model panel on
the right (see Figure 1b for the already implemented view). In
the model panel, the newly added layer shows an interactive
visualization, illustrating the functionality of the layer. The
user can interact with a few parameters, depending on the
layer type. For example, the convolution layer allows the
user to interact with the size of the convolution kernel, as
well as the depth of the output.

Initially, only input and output layers are present in the
model panel, and neither layer can be rearranged or deleted.
Since layers can be arranged only in specific orders, they
are represented as puzzle elements that follow the same
constraints. If the user does not follow these constraints, the
layers are visualized as disconnected, and an error message
suggests fitting layers. If the model is valid, the user can
proceed to the next view.

Train. In this view, users can use a set of controls to re-
set, pause, or start the training. Additionally, a slider allows
users to set the number of epochs. When the training starts,

the slider automatically moves to the left, as the remaining
epochs decrease. A line chart displays the training progress
by showing the accuracy for every trained epoch.

Evaluate. This view displays all images from the test sub-
set of the data set with their prediction. It orders the pictures
into four columns representing the true and false predictions
for both classes and shows their respective class probabilities.

Upload. The upload view allows users to upload their im-
ages to predict them with a previously trained model. For
these images, the view uses the same visualization technique
for the predictions as the evaluate view. The images can ei-
ther be dropped into a designated upload area or opened via
the standard file dialog of the operating system.

Thinking Aloud to Unveil Design Flaws
After prototyping, we applied the thinking-aloud method,
in which participants walk through the learning applica-
tion while verbally expressing their thoughts to discover
design flaws in our clickable Lo-Fi prototype [14]. The proce-
dure went as follows: we explained the rules of the thinking-
aloud method and informed them that we would record their
thoughts and actions. Then we asked the participants to
click through the prototype step by step and to pretend to
perform the image classification task. In the end, we dis-
cussed possible solutions for the problems the participants
encountered.

We recruited three male participants from the age of 27 to
39 years (mean: 31.3, standard deviation: 6.7). All the partici-
pants had more than three years of experience in the field of
human-computer interaction, while their level of expertise
in deep learning varied widely.
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Overall, we identified several user experience problems
in the interface. For example, in some cases, participants
mentioned that positive feedback is missing or that it would
be great to present helping information only once but allow
them to get it back with a simple button click. These com-
ments are in line with the eight golden rules of interface
design by Shneiderman [18], which state that users should
receive informative feedback for their actions, and Nielsen’s
heuristics for user interface design [17], which say that the
interface should be minimalistic. Furthermore, we unveiled
some technical flaws in our design concept in terms of cor-
rectness and practicality.

Implementation of the Learning Platform
Following the thinking-aloud method, we implemented a
high-fidelity prototype4 in the form of a web application,
incorporating all given feedback. We implemented the client-
side of the application using the progressive Javascript frame-
work Vue.js5, and developed our server in Python using Ten-
sorflow6. Client-server communication is based on sockets.
Users can create custom datasets with little effort. To

achieve this, we use Flickr’s REST-API7, enabling users to
load labeled images from the image hosting service via key-
word-based search (see Figure 1a). Each class consists of 200
pictures with a resolution of 75x75 pixels (used resolution
can be changed in model view), so 400 images in total. Addi-
tionally, users can replace specific images with new ones.
Furthermore, we implemented a purely client-based ver-

sion using Tensorflow.js8, allowing users to train networks
using their hardware.

5 TECHNICAL EVALUATION
For the technical evaluation, we asked ourselves two ques-
tions: 1) what accuracies are possible with our learning ap-
plication, and 2) how much slower is training on the client
vs. on the server.

Accuracy of Trained Models
First, we evaluated what accuracy is possible for known im-
age classification problems in our application. Accuracy is im-
portant for user experience because a well-performing model
can increase the users’ satisfaction. We expected a lower
model performance since we limited the dataset size and res-
olution, to achieve lower response times and allow quicker
experimentation. Furthermore, we examine less-complex

4Our learning application. http://ai.uol.de
5Vue.js. https://vuejs.org, last retrieved July 20, 2020
6Tensorflow. https://www.tensorflow.org, last retrieved July 20, 2020
7Flickr API. https://www.flickr.com/services/api/request.rest.html, last re-
trieved July 20, 2020
8Tensorflow.js. https://www.tensorflow.org/js, last retrieved July 20, 2020

models trained in a reasonable amount of time. To evalu-
ate the performance impact of these limitations, we tested a
model architecture with four different datasets. We trained
the model for 20 epochs on each dataset with a 75%/25%
train/test split (see Table 1).

Table 1: Resulting accuracy for different example datasets.

First Class Second Class Accuracy
Dogs Cats 65%
Golden Retriever American Shorthair 80%
Pigs Horses 87%
Landscapes Paintings 95%

While for simple problems like ’Pigs & Horses,’ or ’Land-
scapes & Paintings,’ the model achieves higher accuracy, the
accuracy for the default problem ’Dogs & Cats’ is below 70
percent. We think this is due to the variety of dog and cat
breeds. Since the dataset is small, the test subset of the dataset
likely contains images of breeds that the model had never
encountered during training. Hence, we recommend train-
ing more specific classes. For example, ’Golden Retriever &
American Shorthair’ achieves better results.

Previous analyses of deep learning models deliver more in-
sights into this problem. They show that the primary features
learned by the first convolutional layers in the models of-
ten resemble frequency- and orientation-selective kernels or
color blobs [13, 26]. The recorded accuracy may be a result of
this since images of pigs and landscapes both feature distinct
color values and shapes compared to their respective counter-
parts in the datasets. For example, pigs are mostly pink, while
horses are often brown. Similarly, landscapes mostly feature
sharp and horizontal gradients, while paintings are colorful
and have smaller, curved gradients in various orientations.
The images of dogs and cats, however, are quite similar in
this regard. Thus, this classification task might require more
complex models or larger datasets, both of which are limited
in our application to increase beginner friendliness.

Clients vs. Server for Training
For our application, we implemented two different training
methods: 1) a Python backend based on Tensorflow, and 2) a
frontend trainer based on TensorFlow.js. We experimented
with a frontend-based approach because it allows the web
application to scale better if it performs well enough on users’
hardware.
To measure the performance of both approaches, we se-

quentially ran both configurations, including the server, on
the same machine. Our machine consisted of an Intel Xeon
E5-2678 CPU and an NVIDIA Quadro P5000 GPU. For the
training, we set up a simple model in our application and
trained it with a total of 200 images of two classes in 20

http://ai.uol.de
https://vuejs.org
https://www.tensorflow.org
https://www.flickr.com/services/api/request.rest.html
https://www.tensorflow.org/js
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epochs in both configurations. We measured the time be-
tween the start and end of the training (see Figure 3).

Computation Time in Seconds
0 10 20 30

Javascript frontend with Tensorflow.js Python backend with Tensorflow

Figure 3: Computation time in frontend vs. backend

As Figure 3 shows, the backend trainer finished more than
three times faster than the TensorFlow.js frontend trainer.
The reason is that TensorFlow for Python can access the
GPU of the System directly. At the same time, the javascript
library is limited by the API WebGL, which is intended for
rendering graphics and not deep learning. We argue that the
loss in power is quite significant. Furthermore, the library
TensorFlow.js uses all available computational resources,
often resulting in system lags. Thus, we recommend using
the Python backend, and reverting to the frontend when the
backend is not available (e.g., overload or connection issues).

6 DISCUSSION
The focus of our application is to empower beginners to gain
practical experience with deep learning. Hence, we created a
minimalistic design that teaches the user the basic concepts
while solving practical problems.

Scope of Our Application
We tried to identify the essential features our application
should include with methods from the human-centered de-
sign process. However, during our technical evaluation, we
realized that our design does not include many countermea-
sures against overfitting. Overfitting could become a problem
because the small dataset sizes encourage this phenome-
non. Due to missing generalization, that is, the ability of the
model to adapt to previously unseen data overfitting affects
the training process very early [23]. Currently, our proto-
type only allows the user to stop the training process at the
right time to avoid overfitting. Nevertheless, several features
would enable users to combat this phenomenon. For example,
the application could introduce the dropout layer type after
the user encountered the effects of overfitting the first time.
The dropout layer would allow the user to add regularization
to the model, which reduces overfitting [20]. Another op-
tion is the introduction of data augmentation [24]. However,
this process by itself is computationally demanding, since it
transforms every image in various ways to increase the size
of the dataset artificially.

Model Training Accuracy
An important factor is the performance of the trained mod-
els. If users should stay motivated to use the application, a
certain level of accomplishment is required. Unfortunately,
the minimalistic design compromises performance in several
ways. For example, the limited size of images in datasets
enables users to interact with every picture but introduces
limitations. We evaluated how these limitations affect perfor-
mance in more difficult classification problems, for example,
with the groups dogs and cats. Here, it is likely that the many
different breeds of dogs and cats make it challenging for the
model to learn the differentiating features of the two classes.
However, in simpler classification problems, the results were
much better. Thus, we recommend starting with them.

Future Work
We plan to conduct an online study to evaluate the usability
and learning support of our web application in the wild.
Therefore, a short dialogue will ask users that try out the
app if they are willing to participate in a user study. If they
agree, we ask them to walk through the app from beginning
to end and to train and evaluate a model. Then, we will ask
them questions about their experience. For example, we will
measure usability with the SUS questionnaire [1]. If users
continue using the application, we ask them if we can collect
data on their performance. Additionally, we plan to integrate
our application into university courses on machine learning
and acquire direct feedback via interviews.
We already addressed the addition of the dropout layer

type. This feature allows users to combat the effects of over-
fitting, a common solution for this problem in real-world
scenarios. In the future, the application could allow the user
to deploy their trained model to an external device (e.g.,
their smartphone). We could implement an app that enables
the user to download their trained model from the back-
end, for example, for the classification of images from the
smartphone’s gallery with a respective companion app.

7 CONCLUSION
In this paper, we developed a web-based learning applica-
tion that helps beginners understand deep learning work-
flows and solve practical problems. We followed the human-
centered design approach to create a user-friendly interface
and conducted a technical evaluation to demonstrate which
problems can be solved in the app. Next, we plan to do an
online evaluation to determine usability and what beginners
are able to achieve with the web application.
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