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Figure 1: The “ExplAInable Pixels” web interface provides insights into deep learning models during adversarial attacks.

ABSTRACT
Nowadays, deep learning models enable numerous safety-critical
applications, such as biometric authentication, medical diagnosis
support, and self-driving cars. However, previous studies have fre-
quently demonstrated that these models are attackable through
slight modifications of their inputs, so-called adversarial attacks.
Hence, researchers proposed investigating examples of these at-
tacks with explainable artificial intelligence to understand them bet-
ter. In this line, we developed an expert tool to explore adversarial
attacks and defenses against them. To demonstrate the capabilities
of our visualization tool, we worked with the publicly available
CIFAR-10 dataset and generated one-pixel attacks. After that, we
conducted an online evaluation with 16 experts. We found that our
tool is usable and practical, providing evidence that it can support
understanding, explaining, and preventing adversarial examples.
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1 INTRODUCTION
Deep learning models have permeated numerous areas of our ev-
eryday lives, with no end in sight. Quite the contrary, these models
are increasingly used in formerly untouched areas, and recently,
they have gained relevance in safety-critical applications as well.
Examples of such safety-critical applications range from biometric
authentication (e.g., for face recognition systems that grant access
to smartphones [55]) over medical diagnosis support (e.g., for com-
puter vision systems to detect tumors [14, 56]) to self-driving cars
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(e.g., for object detection systems to identify traffic signs [21]). How-
ever, deep learning models also have inherent limitations as they
are prone to attack, and several studies demonstrated the vulnera-
bility of these models in general [23, 49, 53]. Moreover, numerous
safety-critical applications that utilize these models are at risk as
well [21, 30, 48, 49], with potentially fatal consequences [50].

A common threat to deep learning models are adversarial at-
tacks [15, 17]. These attacks fool models by providing misleading
input, meaning they modify the input of the model to influence the
given prediction [23, 53]. A known example are One-Pixel Attacks
(OPAs), in which the modification of one pixel is sufficient to fool
the model [52]. While researchers showed that attacks are more
difficult to reproduce under realistic circumstances [36], it is not
impossible [30]. Although OPAs represent a minimal intrusion on
the inputs that can have an enormous impact on the outputs, they
can be easily overlooked by humans. However, after realizing that
an attack has occurred, OPAs are often times easier to identify than
other attacks that are barely or not perceptible to the human eye [2]
or ear [45]. Therefore, OPAs are a good example to start with when
investigating defenses against adversarial attacks in a user study
with experts. Nevertheless, as voiced by Carlini and Wagner “de-
fending against adversarial examples remains a challenging open
problem for the field” [11]. Hence, as automated defenses against ad-
versarial attacks are difficult to implement, providing experts with
suitable visualizations can contribute to a better understanding of
these attacks [27].

To make deep learning models and other Artificial Intelligence
(AI) approaches explainable, the field of Explainable Artificial In-
telligence (XAI) has formed and proposed different techniques in
previous work [4, 24, 26, 34]. Here, many of these techniques are
utilizing visualizations to explain what a deep learning model has
internalized and to make decisions transparent to humans [25].
For example, the Spectral Relevance Analysis [31] and Local Inter-
pretable Model-agnostic Explanations [47] can help to understand
how a deep learning model forms a prediction. However, while
these techniques can help understanding deep learning models,
they are designed to learn about the models in general and often
are not investigated for adversarial attacks or OPAs in particular.

Thus, in this paper, we continue these efforts and extend the
adversarial attack defense algorithm proposed by Papernot and
McDaniel with an XAI visualization tool designed for expert users,
empowering them to explore OPAs [42]. By using this tool, expert
users are supported in understanding OPAs and identify potential
defenses against them. Thereby, we implemented our tool as a web
application and used the publicly available CIFAR-10 data set [28]
as a starting point for evaluation, which we extended to include
one-pixel attacks. After that, we conducted a remote user study
with 16 experts to mainly gain qualitative insights but also to evalu-
ate the usability of our tool. Our results show that the visualization
tool reaches good usability and experts rated the tool as effective to
understand attacks, defenses and data as well as helpful to identify
issues and find anomalies.

Contribution Statement.Our work contributes an open source
visualization tool that will help experts to investigate adversarial at-
tacks. Moreover, we contribute qualitative and quantitative insights
from an evaluation with 16 experts.

2 RELATEDWORK
Adversarial Attacks. Adversarial attacks use slight input mod-

ifications to trick a model into giving a false prediction. In these
attacks, humans often cannot see that an attack takes place since
the changes to the pixels are too minor [23]. Thus, these attacks are
often counter-intuitive as two very similar images are predicted
very differently. These properties of deep neural networks were
first discovered by Szegedy et al. [53] and affect models outside of
image processing as well, for example, for spam filters [18] and mal-
ware detection [6]. Besides the investigated OPA [52], numerous
types of adversarial attacks exist [12, 16, 39, 40]. Moreover, there
are possible attacks for every known neural network architecture
and even for most other machine learning models [43]. Nonetheless,
we focus on deep learning models as these suffer from the black
box problem strongest and we chose OPAs as they are often easy to
identify, and thus, a first step towards adversarial attacks in general.

In the past, researchers demonstrated that different safety-critical
applications are affected by adversarial attacks. For example, ad-
vanced driver-assistance systems and autonomous vehicles are
affected [30]. Here, traffic signs can be manipulated to cause a mis-
classification, which can be life-threatening when a stop sign is
falsely identified as a speed limit 100 sign [50]. By placing stickers
on a stop sign, it is possible to generate physical adversarial exam-
ples that are robust to widely varying distances and angles [20].
Small colored patches can fool classifiers regardless of the scale,
location, or scene it is placed in and force an arbitrarily targeted
output [10]. They can even be disguised as an innocuous sticker
of a smiley and placed on traffic signs, clothes, among others. In
this way, even the whole optical flow of self-driving cars can be
disturbed [46]. Other examples include 3D-printed objects whose
surface can be generated in a specific way to misclassify turtles
as rifles [1] or eyeglass frames that can effectively fool state-of-
the-art face-recognition systems in order to dodge recognition or
impersonate other persons [49]. All these examples highlight the
importance of identifying defenses against such attacks.

Defenses Against Adversarial Attacks. Researchers have proposed
different defense strategies for adversarial attacks. For example, ad-
versarial training, in which adversarial examples are injected during
the training process to improve the generalization property of the
model [23, 53, 54]. It turned out that this is not only a defense strat-
egy but also improves the training results overall. However, this
defense was not able to provide a meaningful level of robustness
in the long term because newly proposed attacks will always need
to be reconsidered for running systems that use AI. This means
for each new attack algorithm suitable adversarial examples need
to be created to retrain the system afterward. For example, the
Carlini-Wagner attack was found to undermine adversarial training
among other defenses [12]. Another example is defensive distilla-
tion, which reduces the complexity of the model [41, 44]. The idea
is to train a second model using the softmax probability outputs
on the primary model instead of the original labels. Nonetheless,
Carlini and Wagner invented an attack showing that defensive
distillation is not robust to adversarial examples [11]. A reactive
strategy that was proposed is MagNet [38]. The idea is to train a
second detector neural network that tests if an input is authentic
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or adversarial. But again the strategy is susceptible to the Carlini-
Wagner attack [13]. Numerous other attacks and defenses have
been proposed, however, “defending against adversarial examples
remains a challenging open problem for the field” [11]. Consequently,
we try to open up ways for experts to understand these attacks and
investigate new solutions.

Explainable Artificial Intelligence. The goal of explainable artifi-
cial intelligence is to make the results of AI systems understandable
and the decisions transparent to humans. However, a trade-off
between model complexity (often performance) and model inter-
pretability must be accepted [25]. There are various approaches to
achieve explainability, which are categorized differently in previous
work [4, 24, 26, 34, 35, 37]. Some authors divide into model expla-
nations, outcome explanations, black box inspection, transparent
design [34], while others categorize approaches as local (explaining
a single prediction) or global (explaining the overall model) as well
as model-specific (can be applied to a single model or a group of
models) or model-agnostic (can be applied to any model) [4]. Often
times it is distinguished between transparent models and post-hoc
explanations [4, 24]. We use the latter, where several approaches
exist. Researchers suggested that investigating adversarial attacks
with XAI contributes to a better understanding of them [27]. There-
fore, in our work, we focus on post-hoc explainability approaches,
where textual and visual explanations of the model’s decisions and
behavior are presented to the user [25]. Besides that, local expla-
nations can be given, which segment the problem into subspaces,
where decisions can be explained and interpreted locally [24, 26].
Explanation by example can be used, where other examples that
the model considers to be most similar to the input sample are
presented to the user [4, 34]. In particular, we use interactive expla-
nations that help the user to investigate the suggested explanations
in more detail [22].

In previous work, Papernot and McDaniel proposed the deep
𝑘-nearest neighbors (𝑘-NN) algorithm as an approach to detect
adversarial attacks [42]. In the scope of this paper, we implement
similar ideas as [19, 51], but in contrast to previous work, we present
the results of the algorithm to the user to benefit from human ca-
pabilities. The idea of the implemented algorithm is to inspect the
internals of a deep neural network at test time. The activations
of the layers are compared with the nearest neighbors among the
inputs used to train the model. The nearest neighbors enable inter-
pretability because they are points in the input domain that serve
as support for the prediction and can be easily understood and
interpreted by human observers. While interpretability is provided
by the raw nearest neighbors, the confidence and robustness are
estimated by evaluating the homogeneity among the labels of the
nearest neighbors [42].

3 GENERAL APPROACH
In our paper, we are continuing the general idea suggested by
Papernot and McDaniel and implemented the proposed 𝑘-NN ap-
proach [42]. Different from their work, we extended it by an interac-
tive visualization component that targets expert users. Thereby, we
intend to make the subject better explorable to experts in AI and to
support them in finding more general solutions for this challenge.
In particular, we implemented the interactive visualization to be

available via web browsers. For the deep learningmodel that we aim
to investigate for adversarial attacks, we selected a Convolutional
Neural Network (CNN) architecture by Chollet et al.1. Thereby, we
ensured that our solution is comparable and transferable to previ-
ous work. For the task, we choose image classification because it is
intuitive for a human to understand and corresponding data can be
explored well. After implementing, we chose the CIFAR-10 data set
as a benchmark for our tool [28]. Here, we generated OPAs, because
these attacks are also easily recognizable and understandable for
humans, thus, a good start to study adversarial attacks. Finally,
we presented our tool to 16 AI experts in a user study, utilizing
questionnaires, thinking aloud, and semi-structured interviews.

4 EXPLAINABLE PIXELS VISUALIZATION
4.1 Overview
The ExplAInable Pixels application and its source code is available
online2. The tool consists of a 𝑘-NN defense algorithm based on
the concept of Papernot and McDaniel [42], a user interface with
interactive visualizations, a CNN model and the prepared data
set. The underlying idea is that an adversarial example can be
detected due to discrepancies in the hidden layers. Figure 2 depicts
the functioning of the defense algorithm, which uses the neural
network activations and builds a 𝑘-NN classifier per layer on top,
deciding if the interface displays an alarm or not (see Figure 1).

4.2 𝒌-Nearest Neighbors Defense Algorithm
Our goal is to combine easily understandable algorithms like the
𝑘-NN approach with deep neural networks to benefit from the
advantages of both techniques while mitigating the disadvantages
– similar to the approach proposed by Papernot and McDaniel [42].
This means, that it is quite simple to implement 𝑘-NN classifiers
and to interpret the results while it is hard to comprehend what a
deep neural network has learned and to look inside this black-box.
Furthermore, 𝑘-NN classifiers do not need a training phase and
new data can always be added while the training of a deep neural
network is computationally expensive and needs large amount of
training data. On the other hand, the advantages of neural networks,
such as high accuracy and fast calculations at runtime, compensate
for the relatively low accuracy of 𝑘-NN classifiers for tasks like
image classification as well as the high computational expenses at
runtime, especially with large data sets of high dimensions.

Our approach relies on the premise that a non-adversarial exam-
ple should have similar activations as correctly classified training
samples. Whereas an adversarial example should especially differ
in the last few layers, since the prediction produced by the neural
network is incorrect in the output layer. At runtime (following Fig-
ure 2), when the trained neural network classifies an input image,
the algorithm extracts the activations of the hidden layers for the
unknown input. It compares these data points with the activations
of the correctly classified training data, persisted in the 𝑘-NN clas-
sifiers. This is realized through one 𝑘-NN classifier per hidden layer

1Keras: Deep Learning for humans at Github.com. https://github.com/keras-team/
keras/blob/8bc53bef4fd373d0f4276d00793b9a35fb1a4ef9/examples/cifar10_cnn.py, last
retrieved October 18, 2022.
2ExplAInable Pixels for CIFAR-10 is available at https://udue.de/papa. The source code
can be obtained from https://github.com/jokeppel/ExplAInable_Pixels.
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Figure 2: Flowchart explaining the 𝑘-nearest neighbors defense algorithm following the notation of ISO 5807. As a layer on top,
the dashed lines indicate that the outputs at the bottom are used later for comparisons. Furthermore, miniature depictions are
included that can be conferred with Figure 1.

and additionally a composed layer is created to compare the results
across all layers. The nearest neighbors are then determined for
each layer independently and a threshold determines per layer, if
the defense algorithm raises an alarm or not. The hyperparameter
𝑘 and the corresponding threshold exist per layer and need to be
optimized based on the data set, model, and attacks type to produce
meaningful results. Since this requires a nested loop, the process of
parameter tuning is quite complex and computationally expensive.

If an unusual distribution of the nearest neighbors is identified,
an alarm is raised and in case of a majority among the neighbors, the
algorithm presents an assumption about the recovered, real class.
To be more precise, the first approach is to compare the prediction
of the neural network with the prediction of the 𝑘-NN classifiers.
But in most cases these predictions coincide. Therefore, an alarm is
raised if an unusual distribution of the nearest neighbors is identi-
fied. If there are more (unexpected) neighbors in a layer of a class,
which was not the predicted class by the neural network, than a cor-
responding fixed threshold, the layer raises an alarm. Furthermore,
if there is a majority of a certain class among the nearest neighbors,
which is not the predicted class, this provides the assumption for
the recovery of the real class of the input sample. Lastly, the algo-
rithm saves the distribution of the nearest neighbors as well as the
distances between the corresponding activation vectors.

4.3 User Interface – Interactive Visualizations
We implemented a web interface utilizing Hypertext Markup Lan-
guage (HTML), Cascading Style Sheets (CSS), and JavaScript, as
well as Bootstrap3 and the force-directed graph layout of D3.js4.
This interface (see Figure 1) visualizes the data and decisions of the
neural network (part A: upper row) and 𝑘-NN defense algorithm
(part B: right column). In particular, the distributions and the raw
images of the nearest neighbors per layer of the neural network are
shown to the user to help gaining a better understanding (part C).

3Bootstrap v.4.5.0. https://getbootstrap.com, last retrieved October 18, 2022.
4Force layout v.1.0.6 of D3.js v.5. https://d3js.org, last retrieved October 18, 2022.

While the defense algorithm operates independent of human
monitoring, we implement a visualization tool that tries to make the
involved processes explainable. The user interface consists of three
components which are illustrated in Figure 1. The upper row (part
A) provides an overview of the situation with the input sample, the
neural network, and the output. Mouseover effects are implemented
that highlight the layer the user is about to select and hints if an
alarm is raised in this layer (using red color) or not (using green
color). The user can click on the layers to select them and display
the insights of this layer in the major part below, which contains
internal status information of the system.

The column on the right-hand side (part B) contains the deci-
sions of the defense algorithm, explanations why these decisions
were made, and possibly a recovery of the real class in case of an
adversarial example. Here, visual mouseover effects, that highlight
the hovered layer, are implemented as well. The user can also click
on the layers to select them and switch the content of the force-
directed graph as well as the distribution of the nearest neighbors.
Furthermore, this interaction is visually linked to the overview of
the fully connected layers in the upper row (part A).

In the major part in the bottom row (part C), further information
about the internal status of the algorithm is displayed. This includes
a bar charts for the prediction of the neural network, which uses the
softmax output, and for the distribution of the nearest neighbors,
which also shows the used threshold. The former we call “softmax
output”, the latter “neighbors distribution”. Furthermore, a force-
directed graph containing the raw images of the nearest neighbors
and the corresponding distances are implemented at this point.
There are various methods implemented to interact with the force-
directed graph. The graph can be zoomed in and out by using the
mouse wheel. It can also be moved by clicking and holding the
mouse (drag-movement) by targeting its background. The third
interaction method is hovering over an image, which enlarges the
sample to be viewedmore clearly, showing the label and distances to
the neighbors as numbers. Lastly, by pulling an image (clicking and
holding to pull) the user can experiment around with the forces, see
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how they behave, and view samples that are occluded by chance.
A tooltip in the top left corner of the force-directed graph also
explains these interactions briefly to the users.

4.4 Model and Data Preparation
First, we trained a neural network using TensorFlow5 and Keras6
on Python7 to recognize images of the CIFAR-10 data set [28].
This data set consists of 60,000 color images of 10 different classes
and is widely used as a benchmark in machine learning research.
After that, we set up a defense algorithm for this neural network
by extracting and saving the activations of the hidden layers for
correctly classified training samples.

To test our tool, we generated one-pixel attacks by using an
evolutionary algorithm called differential evolution [52]. Using a
Keras implementation8 as a basis and customizing the code to meet
our requirements, we created targeted attacks on the trained neural
network. The OPA is an exemplary choice and many other attacks
are possible and conceivable. The reasons for choosing the OPA are
the advantages, that this attack is easily understandable and that it
is often simple for humans to recognize if an attack takes place. In
contrast, other attacks are often quite unobtrusive. But since, for
most examples, humans can easily distinguish an airplane and a
bird, it is usually obvious if an attack has happened for all attack
types. The pleasant characteristic of the OPA is that it is often even
possible to specify where and how the attack took place.

We split this new data set into training and validation data, each
containing the same number of adversarial and non-adversarial
examples. Furthermore, the notion of “training” data set means in
this case, that the parameters of the defense algorithm are tuned
using these examples, not that the network is trained on the attacks.
The validation samples are not used to tune the parameters, only
to validate the results. Therefore, they can be used in the study
later to be shown to the experts in the implemented interface, since
they are neither trained on nor used for parameter tuning. Then,
we tuned the parameters of the defense algorithm using the new
training data set. Therefore, we considered every dense layer in
the trained neural network and searched for the optimal 𝑘 and
threshold for the 𝑘-NN defense approach. The used neural network
reaches a validation accuracy of 79.1% after training. This accuracy
is approximately the same as the accuracy of 78.9%, that Krizhevsky
reported after introducing the CIFAR-10 data set [28, 29].

Since the choice of the hyperparameters 𝑘 as well as the men-
tioned and fixed threshold is not obvious but crucial for the per-
formance of the defense algorithm, we needed to optimize these
values. This is done for every layer independently since it has to be
investigated which choices are suitable here. The goal is to not raise
an alarm for non-adversarial examples and to raise an alarm for
adversarial examples. Consequently, there are four possible cases:
true positive (TP) means that the defense algorithm correctly de-
tects an adversarial example; true negative (TN) means that the
defense algorithm correctly detects a non-adversarial example; false
positive (FP) means that the defense algorithm incorrectly raises an

5TensorFlow v.2.2.0. https://www.tensorflow.org, last retrieved October 18, 2022.
6Keras v.2.3.1. https://keras.io, last retrieved October 18, 2022.
7Python v.3.7.6. https://www.python.org, last retrieved October 18, 2022.
8One-Pixel Attacks. https://github.com/Hyperparticle/one-pixel-attack-keras, last re-
trieved October 18, 2022.

alarm for a non-adversarial example, this is the case of a false alarm;
false negative (FN) means that the defense algorithm incorrectly
misses an adversarial example.

To measure the performance and fine-tune the parameters of the
defense algorithm, we calculate the accuracy, true positive rate, true
negative rate, false positive rate, false negative rate and equal error
rate per layer and threshold. Furthermore, we calculated the Re-
ceiver Operating Characteristic (ROC) curve to evaluate the quality
of the defense in terms of the trade-off between False Positive Rate
(FPR) and True Positive Rate (TPR) when varying the threshold
per layer. The parameters 𝑘1 = 13, 𝑘2 = 23, 𝑘3 = 12, and 𝑘4 = 12
for layer 1 to 4 turned out to be optimal in our case as the valida-
tion results showed. The corresponding graphs are presented in
Appendix A.

5 EVALUATIONWITH EXPERTS
5.1 Study Design
To investigate our visualization tool, we conducted a remote user
study in which we presented the tool to experts.

As a first aspect, we consider the usability of the system. We
investigate what the user needs as an expert and how it has to be
presented and implemented to create a better understanding and to
gain additional insights. Therefore, we explain the purpose of the
tool and the required foundations to the experts before the study,
but we do not explain the features and functions of the system.
The experts should explore the tool themselves. Important facets
are the user interface structure, design, and usability as well as the
interaction with the system.

As a second aspect, we consider the effectiveness of the system.
We study how the experts estimate the effectiveness of this tool
and the results. Furthermore, we investigate which problems and
anomalies the experts find in the data and how the tool supports
gaining these insights. We examine if there are difficulties in under-
standing the usage of the system concerning the data, the attacks,
and the defense algorithm, and report shortcomings. We test if the
experts see advantages in the developed tool to comprehend the
used attacks, the defense algorithm as well as related data and what
they can learn from the tool.

Our measures contain the System Usability Scale (SUS) [9], indi-
vidual Likert-items, recordings of the thinking aloud method [7],
and the qualitative feedback from a semi-structured interview.

5.2 Procedure
We invited 16 experts with prior knowledge in topics related to
AI to participate in our study. Due to the ongoing COVID-19 pan-
demic, we decided to perform the study remotely. Thus, we con-
ducted the study via video conference using Zoom. The procedure
consists of the following nine items: 1) welcoming of the experts,
acquiring written informed consent, and demographic survey, 2)
self-assessment of the experts’ expertise, 3) introduction to our
research and the underlying concepts and algorithms of the tool, 4)
exploration of the tool, 5) system usability scale questionnaire, 6)
individual Likert-items, 7) semi-structured interview, and 8) closing.
Participants could cancel their participation at any time without
detriments.
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For the exploration of the tool, we presented some adversarial
and non-adversarial examples, which were neither used for training
nor parameter tuning, to the experts utilizing the implemented
interface. We made sure that every possible case (true negative, true
positive, false negative, false positive) occurred, and furthermore,
added examples, where the layers come to different conclusions.
To view the examples directly using the implemented interface9,
replace the identifier with an arbitrary integer between 1 and 496
in the website address. While the experts explore the data using our
tool, we use the method of thinking aloud to examine the usability
of graphical user interfaces [7]. Meanwhile, the experts are filmed
using their webcam, their actions are recorded using the screencast,
and they are asked to speak all their thoughts out loud [33].

Briefly after using the tool, but before any further discussion
takes place, the System Usability Scale (SUS) questionnaire is given
to the experts. Then, we asked individual Likert-items concerning
the effectiveness of the tool. At last, we ask our experts about their
experiences using the system in semi-structured interviews. On
average, the study took about 60 to 90 minutes per expert.

5.3 Experts
We recruited 16 participants, in the following referred to as experts,
(12 male, 3 female, 1 preferred not to answer) aged between 23 and
41 with a mean age of 29.5 years (SD=4.66 years). The highest level
of education of the experts was bachelor’s degree (3), master’s de-
gree (11), and Ph.D. or higher (2), all in the field of computer science,
who were at the time studying as masters students (3), employed as
research assistants (11), and as senior researchers (2). The experts
worked in applied computer science (6), electrical engineering and
robotics (4), data visualization (2), systems and networks (2), human-
computer interaction (1), and machine learning (1). All experts have
at least one year of experience in the field of AI, 6 have at least two
years, 4 have at least three years, and 3 have four or more years
of experience. Every expert named topics and projects involving
AI, that the corresponding expert worked on. The most frequently
mentioned keywords with the highest relevance for this paper are
image processing and CNN (8), XAI (1), and adversarial examples (1).
The remaining mentions ranged from reinforcement learning (4)
and robotics (4) to multiclass classification (2) and natural language
processing (2), among others. The self-assessment yields that the
experts have good prior knowledge in simple machine learning
algorithms and even stronger prior knowledge regarding neural
networks. Moreover, concerning XAI, four experts rated themselves
as being fairly skilled, two stated that they are very skilled, and one
person rated themselves to be an expert for XAI.

5.4 Results
5.4.1 System Usability Scale. We calculated the SUS score for each
expert, following Brooke’s formula [9] and obtained a mean score
across all experts of 76.72 (SD = 12.24). According to Bangor et
al. [3] the measured usability is between “good” and “excellent”.

5.4.2 Individual Likert-Items. The experts confirmed the effective-
ness of the visualization tool as presented in Figure 3 (Likert-items

9ExplAInable Pixels interface. http://www-stud.uni-due.de/~scjokepp/masterarbeit/
?id=X, last retrieved October 18, 2022.

in the description). They agreed that the tool helped them to un-
derstand the attacks (Mdn=5, IQR=1.5), defenses (Mdn=6, IQR=0.5),
and data (Mdn=5, IQR=1). Moreover, they stated that the tool helped
them to identify issues (Mdn=6, IQR=0.25) and find anomalies
(Mdn=6, IQR=1). Hence, we can conclude that the experts viewed
the tool as helpful to better understand one-pixel attacks.

5.4.3 Qualitative Feedback. To evaluate the verbal statements of
the experts given in the thinking aloud part while exploring the
interface and likewise the answers from the semi-structured inter-
views, we transcribed all statements, answers, and events that oc-
curred. We searched for patterns of experts’ opinions and thoughts
about the ExplAInable Pixels visualization tool by applying open
coding, followed by a thematic analysis of our interview data per-
formed by one researcher [8, 32]. We organized the codes that
we found into clusters and visited the transcript and audio/video
recordings again when additional information was needed during
the analysis. In the following, we present the main themes that
emerged from the qualitative feedback.

Visualization Components. The experts highlighted that they
first inspected the softmax output and the neighbors distribution
to understand the results of the defense algorithm. Then, the graph
helped them to find out more about the nearest neighbors. Some
experts voiced that the graph can be overwhelming and get in
the way when trying to understand the functionality of the tool.
P08 stated: “The graph was a combination of confusing and helpful.”
Others evaluated the graph positively, for example, P02 and P13
mentioned, that “a graph like this is always an intuitive visualization”
and the graph is said to be useful to dive into the data after checking
the overall outcome first. Then, it is helpful to understand details
of the data, the distribution and to gain insights about what the
neural network has learned.

Understanding Data. While in total, we showed ten samples to
each expert, we ensured that every expert received at least one
sample of each class (true/false positive/negative) to verify that
they understand the implemented tool and recognize these cases.
Therefore, we asked the experts to identify the cases that we added
on purpose. While exploring the examples, 14 out of 16 experts
recognized the cases true positive and true negative immediately
and understood the reason for the triggering or absence of an alarm
respectively. In total, 12 out of 16 experts recognized the case of an
undetected adversarial example (false negative) immediately and
mentioned it themselves, while four could not find it immediately
and needed help. Lastly, 6 out of 16 experts recognized the case of a
false alert (false positive) immediately and mentioned it themselves.
Another 9 experts did not explicitly comment on this case but
seemed to have noticed it since they mentioned that an alarm was
raised although the class that the neural network assigned was
obviously correct.

Opportunities to Learn. The tool helped the experts to understand
what the neural network has learned. If we take all answers and
expressions during the thinking aloud part into account, all 16
experts provided aspects here, such as: Many experts mentioned
that the neural network seems to consider the background color. P04
commented: “In the first layer, the background seems to be the main
feature, while in later layers not so much anymore.” Some experts

236

http://www-stud.uni-due.de/~scjokepp/masterarbeit/?id=X
http://www-stud.uni-due.de/~scjokepp/masterarbeit/?id=X


ExplAInable Pixels MUM 2022, November 27–30, 2022, Lisbon, Portugal

Finding anomalies
Identifying issues
Understanding data
Understanding defense
Understanding attacks
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Strongly disagree Disagree Somewhat disagree Neither agree nor disagree Somewhat agree Agree Strongly agree

Effectiveness of the ExplAInable Pixels Visualization Tool

Figure 3: Distribution of the survey results regarding the effectiveness of the implemented tool. The 16 experts estimated
various aspects using a 7-point Likert scale ranging from “strongly disagree” (1) to “strongly agree” (7). The questions were
“The tool is effective to...” 1) “understand the nature of the attacks,” 2) “understand the nature of the defense algorithm,” 3)
“understand the underlying data,” 4) “identify the problem and affected layers,” and 5) “find anomalies in the data.”

observed that position, posture and shape seem to be learned by
the neural network. “The network takes the existence of a fence into
account for the concept of a horse” as P16 stated, and P04 and P06
mentioned something similar. A few experts indicate that the overall
coloring was maybe learned by the neural network, for example
the network may have learned that red cars are most likely (fire
department) trucks. Furthermore, many trucks, cars, and airplanes
that are close to each other have in common, that wheels and asphalt
are in the image.

Overall, most experts realized that the intuition of activations
differing especially in the last layers leading to a suspicious dis-
tribution of the nearest neighbors (cf. [42]) does not seem to be
necessarily correct. Moreover, the visualization reveals duplicates
and images that are very similar in the training data. Since the
𝑘-NN algorithm tends to find these clusters, they need to be re-
moved when applying the 𝑘-NN algorithm in the future as they
also harm the performance of the defense algorithm. The experts
found that the CIFAR-10 data set is not clean and contains many
“almost duplicates”.

Potential Use-Cases. The experts highlighted that the tool can
be used to defend attacks on deep learning models. For example, a
suspicious input sample is presented if an alarm is raised so that the
user can investigate further if and how an attack took place. One
expert mentioned the example of an employee at a social media
company, who has to eliminate inappropriate posts and could use
such a visualization. Such a tool could identify clusters of similar
posts and help to put suspicious posts into context. Some experts see
advantages in understanding attacks and developing more robust
algorithms using this tool. An alternative judgment of a second
method like the 𝑘-NN approach helps to identify error-prone areas.
A few experts said that the tool composed of a pre-trained neural
network and a 𝑘-NN algorithm could be used to monitor large data
sets and ensure the quality. Or more abstract, the tool could be used
for vulnerability analyses for existing networks or directly after
training. Most of the experts confirmed that they would use such a
tool in a more condensed form as part of their workflow.

Suggested Improvements. The experts made various suggestions
for improvement. These suggestions included trying different dis-
tance metrics or algorithms for the visualization and using different
attacks. In particular, P08 suggested to search for peaks in the dif-
ferences between two vectors across all entries, which can reveal if

only a small portion of the entries are mainly responsible for the Eu-
clidean distance value. This could lead to the use of the Chebyshev
distance assigning the greatest difference along any coordinate di-
mensions as distance between the activation vectors. Currently, this
information is hidden by using the Euclidean distance and could be
visualized by making the links in the graph clickable, which would
display the activation vectors and highlight the differences.

6 DISCUSSION
Our results imply that the ExplAInable Pixels visualization tool pro-
vides usability and explainability for experts. The experts identified
scenarios in which such a tool can be integrated in their workflow
and contribute to understanding adversarial attacks.

Usability and Usefulness. According to the results of the SUS,
the implemented tool provides good usability and the individual
Likert-items confirm the tool’s effectiveness to understand various
aspects of the topic. We found that experts understand the different
cases most of the time, which strengthens this statement. Overall,
the force-directed graph is discussed controversially and should be
designed in future work in a less intrusive way so that users can
explore it, if needed, but do not get distracted by it. Nevertheless,
the experts found the tool to be useful and mentioned possible
use-cases for developing and monitoring AI systems.

Explanability of Data and Attacks. We reported insights that
experts gained into what the neural network has learned, mostly
dealing with background, position, posture, shape, and coloring.
For example, the tool hints that attacking the neural network with
an adversarial airplane which is classified as a bird seems to hap-
pen easily since typical examples of these classes share the same
background color and similar shapes of objects. Here, it became
clear that the tool can be used to understand why there is a con-
nection between these concepts and experts can speculate what
a neural network has learned, which is not limited to the chosen
data set and attack type. The expert’s findings using the tool co-
incide with concepts that are known for neural networks in the
literature like learning specific shapes and colors in earlier lay-
ers (e.g. [57]). Tools like Spectral Relevance Analysis (SpRAy) [31]
and Local Interpretable Model-agnostic Explanations (LIME) [47]
visually represent the decision making of deep neural networks.
Our tool expands these concepts by applying similar techniques to
adversarial attacks while examining the nearest neighbors like a
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zoomed-in section of the data. In this way, one can understand the
reasons why attacks are successful and draw conclusions, especially
for defending attacks and examining suspicious input data.

The finding of “almost duplicates” in the CIFAR-10 data set is
also reported by Barz and Denzler, who consequently created a ver-
sion of the CIFAR data set without these duplicates [5]. Besides the
fact that the finding is surprising for a benchmark data set, it shows
that our implemented tool is capable of helping experts monitoring
large data sets and ensuring their quality. A possible scenario in
which it becomes clear that biased data, in general, can be critical,
was shown in an article about Vision AI10, where a thermometer
is classified as “monocular” if held by a light-skinned hand and
classified as “gun” if held by a dark-skinned hand. Regardless of
whether this was an exception or if there is a general bias in the
data, such cases weaken the trust in deep learning models. Some
of the experts speculated that the challenge of finding outliers in
the data producing unexpected results may be similar to detecting
adversarial examples. Therefore, similar cases could be avoided
by using a visualization tool that asks a human supervisor to ex-
amine the data if irregularities are recognized. In this context, the
question arises if numerically optimizing the system for FPR/FNR
and choosing the parameters such as 𝑘 accordingly, is the optimal
approach for a human-in-the-loop process. An interesting aspect to
explore would be at what point human users are overwhelmed by
too many alarms and decisions to make. Of course, this also highly
depends on the use case, where more FP or FN cases are more or
less safety-critical and costly.

Comparison to Existing Work. Results comparable to our findings
are shown by Papernot and McDaniel, where cropping an image
of Barack Obama throwing a ball leads to different nearest neigh-
bors [42]. If the ball is included, the nearest neighbors contain many
basketball players and if the ball is not included, the neural network
seems to focus on the white shirt and green background resulting in
many neighbor images of tennis players. While this can be related
to our findings, their work state that the activations especially differ
in the last layers. This intuition was not confirmed by the experts
in our study, but instead there were hints of the opposite. However,
as this cannot be determined with certainty, further explorative
research is required at this point.

Limitations and Future Work. The experts mentioned various
visual aspects to be implemented in future versions. We chose the
CIFAR-10 data set and the OPAs, but there are numerous possibili-
ties to try out different data sets, attacks, and model architectures.
Our algorithm can be transferred to state-of-the-art architectures,
which, for example, achieve up to 99% accuracy on the CIFAR-10
data set. Moreover, the 𝑘-NN approach can be extended onto other
layer types. But if we want to apply the algorithm to another data
set, the adversarial examples need to be generated and the hyperpa-
rameters need to be fine-tuned again. This process is inconvenient
at the moment and can be automatized in the future. Furthermore,
we mainly focussed on the explainability of OPAs, rather than the
identification of attacks. Thus, we decided to not compare against
a baseline condition without the visualization tool. In the future,

10Article about Vision AI producing racist results. https://algorithmwatch.org/en/
google-vision-racism, last retrieved October 18, 2022.

a study to compare the effectiveness of the approach to similar
research [31, 47] should be conducted.

7 CONCLUSION
We continued on previous efforts to make adversarial attacks ex-
plorable for experts. The interviewed experts confirmed that our
tool provides good usability and is easy to use. Moreover, we found
that our tool supports experts in understanding what a neural net-
work has learned (e.g., background color) and how the one-pixel
attacks relate to the correct class (e.g., a blue pixel located in the
upper half of the picture is interpreted as sky). While other visual-
ization approaches to explaining AI systems exist (such as SPRAY
[31] or LIME [47]), we believe that multiple approaches can exist in
parallel, offering different perspectives on these systems. In partic-
ular, our visualization approach focuses on adversarial attacks and
allows to easily inspect the different layers of CNNs. This provides
novel opportunities for experts to investigate the vulnerability of
these networks and implement counter strategies.
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A APPENDIX: PARAMETER TUNING AND
TECHNICAL EVALUATION

Figure 4: Determination of the EER and the corresponding
threshold for layer 1 using 𝑘 = 13. The ACC, FPR, and FNR
are calculated for every possible threshold. The red vertical
line represents the threshold that yields the EER.

Figure 5: Determination of the EER and the corresponding
threshold for layer 2 using 𝑘 = 23. The ACC, FPR, and FNR
are calculated for every possible threshold. The red vertical
line represents the threshold that yields the EER.

Figure 6: Determination of the EER and the corresponding
threshold for layer 3 using 𝑘 = 12. The ACC, FPR, and FNR
are calculated for every possible threshold. The red vertical
line represents the threshold that yields the EER.

Figure 7: Determination of the EER and the corresponding
threshold for the composed layer using 𝑘 = 12. The ACC, FPR,
and FNR are calculated for every possible threshold. The red
vertical line represents the threshold that yields the EER.
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Figure 8: Determination of the best value for 𝑘 and the cor-
responding best threshold for layer 1. For every 𝑘 , the corre-
sponding threshold meeting the EER is calculated. The vali-
dation results show that the highest accuracy can be achieved
using 𝑘 = 13 (red dashed line).

Figure 9: Determination of the best value for 𝑘 and the cor-
responding best threshold for layer 2. For every 𝑘 , the corre-
sponding threshold meeting the EER is calculated. The vali-
dation results show that the highest accuracy can be achieved
using 𝑘 = 23 for layer 2 (red dashed line).

Figure 10: Determination of the best value for 𝑘 and the cor-
responding best threshold for layer 3. For every 𝑘 , the corre-
sponding threshold meeting the EER is calculated. The vali-
dation results show that the highest accuracy can be achieved
using 𝑘 = 12 for layer 3 (red dashed line).

Figure 11: Determination of the best value for 𝑘 and the cor-
responding best threshold for the composed layer. For every
𝑘 , the corresponding thresholdmeeting the EER is calculated.
The validation results show that the highest accuracy can be
achieved using 𝑘 = 12 for the composed layer.
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Figure 12: Comparison of the ROC curves across layers 1, 2, 3,
and the composed layer using 𝑘 = (13, 23, 12, 12) respectively.
By varying the threshold for each layer, the FPR and TPR can
be measured and plotted to show the trade-off and evaluate
the quality of the defense algorithm per layer.
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