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Abstract

Inertial sensors integrated into smartphones provide a
unique opportunity for implicitly identifying users through
their gait. However, researchers identified different external
factors influencing the user’s gait and consequently impact
gait-based user identification algorithms. While these pre-
vious studies provide important insights, a holistic compari-
son of external factors influencing identification algorithms
is still missing. In this explorative work, we conducted a fo-
cus group with participants from biometrics research to col-
lect and classify these factors. Next, we recorded the gait of
12 participants walking regularly and being influenced by
eleven different external factors (e.g., shoes and floor types)
in two separate sessions. We used a Deep Learning (DL)
identification algorithm for analysis and validated the anal-
ysis results using within- and between- sessions data. We
propose a categorization of gait covariates based on users’
control levels. Floor types have the most significant impact
on recognition accuracy. Finally, between-session analy-
sis shows less accurate yet more robust results than within-
session validation and testing.

1. Introduction
Smartphones are ubiquitously used, holding sensitive

information that should be kept private. Traditional au-
thentication methods such as Personal Identification Num-
bers (PIN) and passwords are vulnerable to observation and
reconstruction attacks. Physiological biometrics systems,
though less vulnerable, are not continuous and unlocked
phones are in an imminent threat. Implicit continuous iden-
tification techniques can overcome these problems by de-
pending on the ongoing recognition of distinct human be-
havior. In particular, identifying an individual based on the
walking style, also known as gait identification, remains one

of the most successful behavior-based implicit identifica-
tion methods [29]. However, most gait studies are seldom
conducted in the wild or consider other factors that might
affect the identification robustness. In actual everyday sit-
uations, humans face external factors that might alter their
typical walking patterns, and accordingly, the continuous
implicit identification process [22]. Among these covariates
are footwear, walking surfaces, objects carried, and other
activities. Several studies showed that wearable sensors,
such as accelerometers and gyroscopes, feasible and accu-
rate for collecting gait data. In addition to the wearable sen-
sors’ non-contact and non-obtrusive nature, that also leads
to higher robustness against spoofing attacks [16]. Since the
vast majority of smartphones nowadays are embedded with
these inertial sensors, more studies focused on gait identifi-
cation using smartphones [15, 19].

Although the questions of what external factors can af-
fect the walking pattern and what effects do these exter-
nal factors impose concerning gait identification techniques
were previously introduced [3, 26, 22], these factors were
not profoundly categorized and investigated systematically,
specifically for inertial sensor-based gait data [6]. It remains
unclear how such factors would affect the performance of
the gait classifiers, and how to develop countermeasures to
mitigate the effects of such factors on the gait classification
process. Focusing on deep learning methods, we base our
classification on one of the most robust gait deep learning
classification methods, reported by Zou et al. [36].

Using this implementation, we investigate different ex-
ternal factors that could affect the accuracy of gait-based
identification. To categorize and summarize the external
factors that would alter users’ walking style, we conducted
a focus group to identify different external factors influenc-
ing gait. We clustered them based on the level of control
users have upon them: uncontrollable such as walking sur-
faces, semi- controllable, involving social situations involv-
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ing another person, and controllable, like interacting with
the phone, carrying an object, or wearing different shoes.

We collected data from twelve participants to assess the
impact of the external possible covariates. The collection
process was conducted twice. In our collected data, we
considered the baseline to be the person walking alone on
a hard floor, wearing their regular shoes, and not doing
any activities. To compare with the baseline, we changed
only one factor at a time from the baseline condition. The
factors’ order was counterbalanced using a Latin square
design, including the baseline. Interestingly, our findings
from validation between sessions showed that walking and
talking achieved solid classification accuracy (73%), com-
pared to the baseline (74%), unlike walking silently with
another person, which resulted in low classification accu-
racy of 52.0%. Additionally, surface types are considered
to be the factors with the lowest classification results.

The contributions of the paper are presented as follows:

1. Investigating and categorizing external gait affecting
factors.

2. Understanding the impact of different factors upon the
inertial sensor-based gait recognition.

3. Evaluating the performance of between- and within-
session training upon the recognition accuracy.

2. Related Work
Biometric systems are mainly divided into physiological

features, such as fingerprint and face recognition, and be-
havioral, that include keystroke dynamics [2, 31, 27], sig-
nature [5, 10], gaze [13, 24], and gait. Since the main in-
terest of this work is gait identification, we focus on previ-
ous works that proposed gait recognition solutions and con-
ducted studies on gait-affecting factors.

2.1. Gait Recognition Systems

In prior surveys, authors summarized the process of
recognizing individuals’ gaits in five main steps [33, 28].
The process starts with data acquisition, where a set of
temporal-spatial raw data is collected, and then become
subject to preprocessing. The features (e.g., gait cycles)
are then extracted, a step denoted as feature representation.
Then, dimension selection, where the most significant fea-
tures are extracted. Lastly, classification takes place.

Mainly, there are three gait recognition approaches: floor
sensors, machine vision, and inertial sensors [12, 8, 9].
Floor-based recognition studies are restricted by certain lo-
cations and conditions, and harder to be conducted in-the-
wild. Vision-based setups require additional equipment to
be ubiquitous. Moreover, they are vulnerable to occlusions
and inconsistent lighting conditions [28]. For these rea-
sons, we focus on the inertial sensors-based gait recognition

method. Commonly known as wearable sensors, this ap-
proach uses attached accelerometers, gyroscopes and other
sensors to retrieve gait data from the person wearing the
sensors [29, 17]. The data could be collected from sensors
attached to the person’s wrist, hip, leg, shoe sole, or embed-
ded in a smartphone that the person uses [35, 20, 7]. Ac-
celerometers and gyroscopes capture movement dynamics
in the X, Y and Z directions, which can accurately describe
user’s movements patterns.

Smartphone-based Gait Recognition Smartphone-
based gait recognition solutions are non-obtrusive and do
not require a dedicated setup or location. Furthermore, they
are showing high recognition accuracy results. Recently,
researchers investigated inertial sensors performance
changes, by comparing the gait recognition performance
with different phone placements, a bag (backpack and
hand carry bag), and when held in hand (left and right),
all collected with different walking speeds (slow, normal
and fast) [22]. Their investigations show that the pocket
position produces the best recognition accuracy perfor-
mance. Zou et al. [36] used CNN to segment gait data into
active walking segments, based their identification upon the
LSTM and CNN techniques, independently and combined.
To overcome the influence of the phone placement in the
pocket, they eliminated the phone’s orientation factor.

Gait Classification Methods Most of the existing so-
lutions relied on different Machine Learning (ML) al-
gorithms, varying between Support Vector Machines
(SVM) [14], Random Forest, K-Nearest Neighbor (KNN)
[4]. More recent solutions used Deep Learning methods,
such as Long Short-Term Memory (LSTM) to recognize
gait patterns collected from Inertial Measurements Units
(IMU) [11, 32, 36, 25]. The wearable inertial sensors
showed promising results and are more ubiquitous than the
other previous approaches. However, keeping one or more
sensors attached to the body is not usable and could be in-
consistent for extended durations.

2.2. Gait-Affecting Factors

Different researchers focused on understanding different
factors affecting gait identification, namely covariate fac-
tors [34, 21]. One of the earliest attempts was the gait
identification challenge problem [23], in which Philips et
al. used the machine vision approach with two cameras to
evaluate and compare the effects of floor (grass and con-
crete), and different shoes (flat and high heels). Focusing
on inertial sensors, Subramanian et al. proposed an orienta-
tion invariant solution for phone-embedded inertial sensors
for gait matching [30]. They considered phone placement
(pocket and holster), and activities as talking, texting and
only walking, in addition to time, where collection took



place twice with several days between the collection ses-
sions, as independent variables. Their results are based on
combining factors rather than observing the effect of each
factor independently. Results showed that EER is signif-
icantly lower with their orientation independent solution,
which we considered in our solution. Their findings show
that slower walking does not have significance upon gait
recognition, compared to faster walking speeds. The phone
placement in the pocket has shown the highest overall accu-
racy results (up to 96.65%). However, they only evaluated
the factors combined, making it harder to assess the influ-
ence of individual factors.

2.3. Summary

Some factors have more impact upon gait recognition
performance than others. While some works already ad-
dressed the external factors affecting gait identification, a
comprehensive classification and investigation of factors af-
fecting gait identification remains unexplored. In previous
studies, data collected in several time intervals was com-
bined and analyzed, which might compromise the classifi-
cation accuracy. Additionally, traditional machine learning
approaches are widely investigated, in comparison to novel
deep learning approaches.

3. General Approach

In this work, we investigate the robustness of gait-
based identification systems. We choose smartphone iner-
tial sensors-based approaches, and we examine the effects
of different external factors on the accuracy of user identi-
fication. We define our main research questions as: RQ1:
How to comprehensively investigate and categorize differ-
ent external gait covariates? RQ2: What are the effects of
different factors upon gait classification? RQ3: How would
the gait recognition performance change based on between-
and within-session training? First, we conducted a focus
group with experts in the field to collect and classify exter-
nal factors influencing gait. Then, to understand the impact
of different external factors affecting gait, we collected a
dataset consisting of the walking data of twelve subjects,
walking in twelve variations of the generated external fac-
tors. Our dataset was collected in two different sessions,
within a time interval of 7-14 days. We selected and reim-
plemented Zou et al. [36] deep learning solution that uses
CNN and LSTM network for gait recognition. We used
the collected baseline data for between- and within-session
training and compared their impact on the robustness of the
recognition accuracy. Additionally, we examined the im-
pacts of the external factors upon the recognition process,
also between and within two sessions.

4. Categorization of External Factors on Gait

Excluding medical studies, existing works investigating
factors impact on gait recognition mainly focused on sur-
faces, clothing, including shoes, and carrying objects. How-
ever, categorizing these factors and investigating their im-
pact comparatively is unaccomplished. Therefore, we con-
ducted a focus group to formulate a detailed structure for
the external gait affecting factors.

4.1. Focus Group

In correspondence to the first question on identifying
and structuring different external factors affecting gait,
we conducted a focus group. We invited four partici-
pants (female=2, male=2), aged between 28 and 33 years
(mean=29.75, SD=2.22), all are researchers knowledgeable
in biometrics and HCI. After filling the participation con-
sent and demographics forms, the session started by intro-
ducing the gait recognition topic, followed asking the par-
ticipants to mention all the gait affecting factors of their
knowledge. We used a collaborative online tool1, enabling
participants to see others’ responses. We used the card sort-
ing technique to cluster these factors. Next, we defined the
external gait affecting factors as causes for gait alterations,
that do not intentionally originate from the subjects them-
selves, create the need for adaptation, and irrelevant to the
subjects’ physical or mental states (e.g., stress). Otherwise,
the factors would be considered as internal. Both internal
and external factors are categorized in Table 1. In this work,
we are primarily investigating the external factors.

The participants continued with listing more aspects that
might influence the regular walking styles. Some of these
factors were environmental such as weather conditions, sur-
face conditions, or activities such as dog walking, walking
with another person, or receiving a notification or a call.
In a second iteration, the group proceeded with refining the
structure by clustering the factors based on the level of con-
trol the affected person has upon these factors, resulting in
categorizing them into uncontrollable, semi-Controllable,
and controllable. Participants defined factors as uncontrol-
lable when the user does not have any control upon the
factor, such as surface conditions, or obstacle avoidance.
While interacting with others or dog walking were consid-
ered reasons to change the regular walk, but the user might
have some control over it. Most of the activities were con-
sidered controllable, as the user has full control or choice
over these factors. Participants categorized the controllable
factors to carrying objects, interaction with their phones,
and different clothing, such as trousers and shoes.

1Miro. https://miro.com, last accessed 20.04.2022.

https://miro.com


Table 1. Overview of the internal and external gait affecting factors
evaluated. The internal factors are sorted into their types, whereas
the external factors are sorted into their level of control.

Type of Factor Category Factor

Mental
Emotion

Stress
Fear

Cognition
Task Difficulty
Goal Planning

Physical
Temporary

Injuries
Muscle Development

Permanent Balance Problems

Combined State
Medication
Caffeine, Alcohol
Exhaustion

Level of Control Category Factor

Uncontrollable Surface Condition
Grass
Gravel

Semi-controllable Interacting /w People
Silent Company
Talking Company

Controllable

Phone Usage
Texting
Phone Call

Carrying Objects
Moving Box
Backpack
Shopping Bag

Shoe Types
Flip-Flops
Winter Boots

4.2. Factors Selection

First, we defined the baseline condition in each subcat-
egory. For surfaces, we selected hard floor, a flat surface
with no bumps or obstacles. For shoe types, we selected ev-
ery day shoes, such as sneaker shoes. Since carrying objects
and interactions with people or phone are considered to af-
fect the gait recognition, we eliminated all activities in the
baseline condition. We wanted to investigate at least two
from each category in our study. Here, we based our se-
lection on the most commonly encountered factors, and the
ones discussed in previous studies. Therefore, we selected
grass and gravel from the uncontrollable category, and silent
and talking semi-controllable interactions with people. For
the controllable aspects, starting with the phone usage, we
decided on texting and talking over the phone. Second, car-
rying objects, we were interested to investigate the three
types of weight loading: front, back and side. Accordingly,
we selected carrying a moving box, a backpack, and a shop-
ping bag, respectively. Since the previously selected factors
would need to be studied in public areas, changing clothes
was difficult to realize. Thus, we limited the clothing cate-
gory to flip-flops and winter boots as shoe types.

5. Explorative Pilot Study

In our study, we collected gait data in two different ses-
sions, and used deep learning algorithms to test the recog-

nition accuracy performance and the effects of the external
factors upon the recognition process.

5.1. Study Design

To evaluate the performance of the framework and the
external gait affecting factors, we conducted a within-
subject study. Our study was conducted into two differ-
ent sessions, separated by a time ranging between 7 and
14 days. The split is a crucial procedure in biometric in-
vestigations to ensure acquiring realistic data validating the
biometric traits of each individual. External factors (11)
deduced from the focus group are the independent vari-
ables. In addition to the baseline consisting of walking
alone, in regular shoes on a hard floor, the total number of
gait recordings is 12 times per session. The sequence of is
counterbalanced using a Latin square design. The depen-
dent variable is the classifier accuracy.

Android Application We developed and used an Android
application. The application collected inertial data from the
accelerometer and gyroscope of the smartphone, with a fre-
quency of 100Hz. We recorded the tri-axial data from both
sensors, along with a timestamp for each point of collection.
The collection is triggered by a start button, and locking the
device is enabled to avoid accidental display touches during
the process. All data is stored in CSV files, anonymized2.

5.2. Procedure and Apparatus

Before the collection, participants received a list of items
to bring on both days of the process. The items were listed
as personal flip-flops, winter boots, and their smartphones,
in addition to wearing trousers with frontal pockets. Experi-
menters brought a moving box, a shopping bag, and a back-
pack, and four weighted plates of a total weight of 5 kilo-
grams. The weights are similar to the ones used by Ming et
al. [18].We invited participants to an open area, that consists
of 50 meters long straight pathways of different types (hard,
grass and gravel). We define the baseline walk as a normal
walk on a hard pedestrian path, each participant wears their
regular every day shoes, and is not performing any tasks.
In the first session, participants signed a consent form, and
confirmed of not having any internal influence upon their
gait, such as an injury or under any substance influence.
Upon signing the consent form, participants were given a
smartphone with our developed application, and asked to
walk steadily and straightforwardly in one of the predefined
paths. We used one phone among all participants to control
the experiment and reduce the noise. Each walk is recorded
when the participant presses that start button in the phone
application, locks the phone, and starts walking the 50 me-

2Our dataset is publicly avaiable here:https://www.hci.wiwi.
uni-due.de/en/research
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Table 2. Validation Datasets Summary
Stage Dataset Subjects Accuracy

Observed Reported Difference
Cycle Extraction Dataset #8 by Zou et al. [36] 118 84.23% 85.57% 1.34%

Identification Accuracy Dataset #1 by Zou et al. [36] 118 92.27% 92.51% 0.24%

ters from a defined point. At the end of the path, each sub-
ject then stops, turns around and walks towards the starting
point, the total distance is therefore 100 meters. There were
no obstacles in any of the paths. Before each walk, par-
ticipants were asked to change shoes, walk in a predefined
path, or carry a different object, separately. The baseline
and the factors are counterbalanced in a Latin square de-
sign. The second session takes place within a duration of 7
to 14 days after the first collection. Each participant repeats
the 12 walks, following the same order of the first day. Each
session took 30-45 minutes per person. We understand that
the phone placement in the pocket is not practical in real-life
situations. However, we opted for a single phone placement
among all participants as a dependent variable to investigate
the impact of the factors upon gait recognition.

5.3. Replication of Gait Identification System

To systematically evaluate the effects of different fac-
tors, we reimplemented the Deep Learning (DL) based gait
recognition solution by Zou et al. [36]. Here, we considered
the implementation shared by the authors on GitHub3. The
algorithm uses a gait extraction neural network, trained to
find the active walking segments of a recorded data sample.
The next step is the cycle segmentation, where these walk-
ing segments are then split into gait cycles, that are later
used in the training of the gait identification network.

Validation with Preexisting Datasets We validate our
implementation using two datasets (#1 and #8) from Zou et
al. [36], consisting of 118 participants. Thereby, we can ver-
ify that we correctly implemented and trained the described
algorithms for which source code was not available. The
used datasets were collected for 98 subjects in one day and
the 20 subjects in 2 different days.[36]. They used dataset
#8 for cycle extraction and dataset#1 for testing the identi-
fication accuracy. Here, dataset #8 is a manually annotated
dataset provided specifically for cycle extraction. As seen
in Table 2, our implementation results compared to theirs
showed differences of 1.34% and 0.24% for the cycle ex-
traction and identification accuracy stages, respectively.

5.4. Participants

We recruited 12 participants (2 female), aged between 23
and 81 years (M = 33.5, SD = 17.2), with no foot injuries or

3Implementation from Zou et al. on GitHub. https://github.
com/qinnzou/Gait-Recognition-Using-Smartphones, last
accessed 20.04.2022.

substance influence. Participants were reimbursed with 20
euros upon the completion of both sessions.

6. Results
We discuss our classification accuracies we observed

during training/validation within/between sessions and how
the classification accuracy is influenced by external fac-
tors. For descriptive statistics, we report mean (M), me-
dian (Md), and interquartile-range (IQR). Effect sizes of
performed statistic tests are reported with r (r=0.1 small
effect, r=0.3 medium effect, and r=0.5 large effect).

Baseline Classification Accuracies First, we report the
classifications accuracies that we achieved when training
and validating with the baseline of one session. Here, we
applied an 80/20 split for training and validating, respec-
tively. For the first session, we reached a median classi-
fication accuracy of 87.5% (IQR=15.6%) and for the sec-
ond, we observed 85.7% (IQR=14.3%). Second, we report
the classification accuracies from training with the base-
line of one session and validating with the baseline of the
other session. For training with the first and validating
on the second session, we achieved an accuracy of 71.8%
(IQR=84.8%) while vice versa we observed an accuracy of
78.0% (IQR=86.1%). All classification accuracies are re-
ported in Figure 6. Combining the results from training
and validating within sessions results in a median accu-
racy of 87.5%, while combining the results from training
and validating between sessions results in a median accu-
racy of 74.4%. As we do not assume normality and com-
pare two matched groups within subjects, we performed a
Wilcoxon Signed-rank test. Here we found a significant
difference between training/validating within and between
sessions (W=241, Z=2.60, p=0.008, r=0.38). We can con-
clude that training and validating between session signifi-
cantly reduces the classification accuracy compared to train-
ing/validating within sessions.

Influence of External Factors within Sessions We
report the classification accuracies, resulting from our
training and validating within sessions. Hence, we
consider the effect of condition (baseline vs. external
factors) on classification accuracy. For each condi-
tion, we consider two accuracies (first session, second
session) per participant (n=12). The median (interquartile-
range) accuracies for each condition are (in descending

https://github.com/qinnzou/Gait-Recognition-Using-Smartphones
https://github.com/qinnzou/Gait-Recognition-Using-Smartphones
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(a) Comparison of training approaches. (b) Comparison of factor influence on the algorithm from Zou et al. [36].
Figure 1. We report the classification accuracies observed. In a) we compare the training within and between sessions (T1=training with
first session, T2=training with second session, V1=validating with first session, and V2=validating with second session). in b) we compare
the influence of the external factors in relation to the baseline within sessions.

order): baseline=87.5% (IQR=14.3%), talk=78.6%
(IQR=51.8%), gravel=75.0% (IQR=29.0%), back-
pack=73.2% (IQR=30.8%), silent=73.2% (IQR=39.3%),
bag=71.4% (IQR=28.1%), box=71.4% (IQR=37.9%), mes-
sage=71.4% (IQR=48.2%), boots=71.4% (IQR=59.8%),
flip-flops=71.4% (IQR=65.2%), call=69.1% (IQR=25.0%),
and grass=67.0% (IQR=46.9%). The classification accura-
cies for each condition are plotted in Figure 6. Since we do
not assume normality, we performed a Friedman test that
revealed a significant effect of condition on classification
accuracy (χ2(11)=27.01, p=0.005, N=12). A post-hoc test
using Wilcoxon Signed-rank with Bonferroni correction
showed significant differences between some conditions
(see Table 3). For the classification accuracy within
sessions, we can conclude: baseline > silent, box, message,
call, grass, boots, and flip-flops.

Table 3. Pairwise comparisons baseline and significant external
factors for training and validating within sessions.

Comparison W Z p r
baseline vs. silent 134 2.99 0.019 0.43
baseline vs. box 139 3.13 0.010 0.45
baseline vs. message 178 3.32 0.004 0.48
baseline vs. call 200.5 3.66 <0.001 0.52
baseline vs. grass 164 3.65 <0.001 0.54
baseline vs. boots 201.5 3.02 0.002 0.44
baseline vs. flip-flops 194 3.35 0.004 0.48

Influence of External Factors between Sessions We
report the classification accuracies, resulting from our
cross-validation between sessions. Here, we consider
the effect of condition (baseline vs. external factors) on
classification accuracy. For each condition, we consider
two accuracies (cross-validation of two sessions) per partic-
ipant (n=12). The median (interquartile-range) accuracies
for each condition are (in descending order): base-
line=74.0% (IQR=86.7%), talk=73.0% (IQR=82.0%), mes-
sage=71.8% (IQR=78.2%), boots=71.8% (IQR=81.9%),
flip-flops=71.8% (IQR=78.1%), bag=69.5% (IQR=65.1%),
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Figure 2. Comparison of factor influence on the Zou et al. [36]
algorithm for training and testing between sessions (cross-
validation).

call=68.5% (IQR=82.2%), backpack=68.3% (IQR=78.2%),
box=66.4% (IQR=81.0%), silent=52.0% (IQR=84.8%),
gravel=46.8% (IQR=85.7%), and grass=21.8%
(IQR=82.5%). The classification accuracies for each
condition are plotted in Figure 2. Since we do not assume
normality, we performed a Friedman test that revealed no
significant effect of condition on classification accuracy
(χ2(11)=16.85, p=0.112, N=12).

7. Discussion
Understanding of different Gait Covariates In RQ1,
we collect and classify the different covariates influencing
gait. The covariates generated by the focus group are broad
and covering different environmental, and personal activi-
ties or attire. In a controlled user study, only specific rep-
resentatives of each influencing factor can be investigated.
Different surface condition, for example, can influence the
gait in a specific way. Additionally, the factors might in-
fluence each other. Thus, interaction effects between the
factors need to be considered. Given the number of fac-
tors we found in the focus group, a systematic assessment
might not be feasible anymore. One approach to tackle this
challenge would be a real world deployment of a gait identi-
fication system that records user data in context. By means
such as contextual inquiry, the data could be annotated and
analyzed. This could lead to a more holistic understanding



of the different factors.

Investigating Factors Influence In RQ2, we wanted to
understand the impact of external factors on the classifica-
tion performance. Results show that accuracy significantly
changes with different factors. We recognize the factors
with the lowest classification accuracies are silent company
52.0%, and the other two floor types: gravel and grass, with
classification accuracies of 46.8% and 21.8%, respectively.
We start with silently walking along another person. Nor-
mally, people talk while walking with their company, as re-
flected in the results where the talking with another person
is the external factor with the highest classification accu-
racy. We believe that silent walks would be strange and
awkward, and result in uncomfortable or different walks,
as reflected in the results. We observe the different surface
types showing the worst classification accuracy results. In
our design, hard regular floor is associated to the baseline
condition. Except for the surface types, all other conditions
are collected with people walking on the hard floor, and it is
justifiable to find the floor types result in lower accuracies.

Within- and Between- Sessions We explored how the
gait recognition performance would change based on
between- and within-session training(RQ3). Accordingly,
we analyzed the collected data in within- and between-
sessions designs. Our results show that the validation ac-
curacy is significantly lower for training and validating be-
tween sessions. The average training accuracy has dropped
from 86.6% to 74.9%, compared to with-session training.
Behavioral biometric features are showing robust results.
However, there are many other aspects that contribute to
change in behavior, such as fatigue or stress. Many studies
used data collected from one rather than multiple sessions.
Although they yield high accuracies, such designs entirely
neglect influencing factors that occur between days for par-
ticipants, such as fatigue or stress. We argue that reporting
accuracies from between sessions comparisons are more ro-
bust when presenting novel identification approaches.

Counter-Strategies As we concluded that external fac-
tors affect the performance of gait recognition systems,
we suggest several counter-strategies to minimize their ef-
fect. Deep learning gait recognition systems require large
amounts of data to perform well, increasing the data used
for training can improve their performance. We propose
training the system continuously with the data recorded dur-
ing runtime. Considering the in-the-wild use, this counter-
strategy improve the system’s robustness against external
factors. Another possible strategy could be to determine ex-
ternal factors representing entire groups of factors. For ex-
ample, the data created for the factors silent and talk might
be similar enough that one of these factors is enough to train

the system to recognize both. Using this idea, we could
drastically reduce the required factors for training the sys-
tem while potentially achieving high accuracy.

Limitations and Future Work We recognize the fol-
lowing limitations in our work. The participants number,
whether in the focus group or the data collection, is lim-
ited. We acknowledge that a larger number of participants
is preferable to increase statistical power for data analysis.
Hence, we consider this study to be more explorative in na-
ture, paving the way for hypothesis-driven follow-up stud-
ies. We also know that only employing one deep learning-
based algorithm lacks comparisons to other approaches, and
accordingly, missing insights to develop a robust gait recog-
nition system. We used one phone among participants, yet
we expect that different devices usage would affect the re-
sults. Finally, there are many external and internal gait af-
fecting factors that we did not consider in our design. How-
ever, the design was limited to these twelve walks per ses-
sion by time and exhaustion constraints.

We believe these limitations can be surpassed in future
studies. Extending the number of participants and the gait
affecting factors, should be considered in the training pro-
cess. We also consider training with various factors as a vi-
able, robust solution to mitigate consequential inaccuracies.
We also consider additional approaches, including machine
learning methods such as Siamese Networks [1], to reach
extended and potent results.

8. Conclusion
Smartphone inertial sensor-based gait recognition meth-

ods are gaining attention for their robustness and ubiquitous
properties. However, accurate user identification is vulner-
able to factors impacting users while walking. In this pa-
per, we investigated and categorized possible factors that
impact the gait identification process. We conducted a fo-
cus group and collected data from twelve participants with
smartphone inertial sensors to investigate these factors. We
used the state-of-the-art deep learning-based implementa-
tion of smartphone-based gait identification to validate our
results. Our main findings show that different factors af-
fect classification robustness, and between-session analysis
is crucial for recognition robustness. Accordingly, we be-
lieve that considering these findings would lead to more ac-
curate and potent gait recognition solutions in the future.
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