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ABSTRACT
Nowadays, Augmented and Virtual Reality devices are widely available and are often
shared among users due to their high cost. Thus, distinguishing users to offer person-
alized experiences is essential. However, currently used explicit user authentication
(e.g., entering a password) is tedious and vulnerable to attack. Therefore, this work
investigates the feasibility of implicitly identifying users by their hand tracking data.
In particular, we identify users by their uni- and bimanual finger behavior gathered
from their interaction with eight different universal interface elements, such as but-
tons and sliders. In two sessions, we recorded the tracking data of 16 participants
while they interacted with various interface elements in Augmented and Virtual Re-
ality. We found that user identification is possible with up to 95 % accuracy across
sessions using an explainable machine learning approach. We conclude our work by
discussing differences between interface elements, and feature importance to provide
implications for behavioral biometric systems.

A video abstract of this work is available online at: https://identifying
-users-by-hand-tracking-data.hcigroup.de
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1. Introduction

Finger and hand tracking has recently become an alternative input technology for
the current generation of Augmented Reality (AR) and Virtual Reality (VR) Head-
Mounted Displays (HMD). The devices sense the movements of the hands, including
precise finger movements, and create models of the entire hand in real-time. In con-
trast to traditional hand-held controller input, the information we gain about the user
is vastly increased. This information cannot only be used for input to extract the com-
mands the user wants to put in but can also provide additional information about how
the user performs the commands. This information is a valuable source for behavioral
biometrics.

*Corresponding author: Jonathan Liebers. E-Mail: jonathan.liebers@uni-due.de

This is an Accepted Manuscript (AM) of an article published by Taylor & Francis in International Journal

of Human-Computer Interaction available at http://www.tandfonline.com/10.1080/10447318.2022.2120845.
This is the authors’ final accepted manuscript. It is posted here for your personal use. Not for redistribution.

https://identifying-users-by-hand-tracking-data.hcigroup.de
https://identifying-users-by-hand-tracking-data.hcigroup.de
http://www.tandfonline.com/10.1080/10447318.2022.2120845


(a) Augmented Reality (AR). (b) Virtual Reality (VR). (c) Hand Tracking in AR and VR.

Figure 1.: We investigate the identification of users by their hand tracking data in (a)
Augmented and (b) Virtual Reality. To do so, we collected hand tracking data from
users interacting with frequently-used interface elements (such as buttons and sliders).
The data is elicited by a head-mounted display that takes several different reference
points of the user’s hands into account (c). The reference points visible in (c) were not
visible to users.

Behavioral biometrics in Augmented and Virtual Reality on HMDs facilitate im-
plicit user identification. Implicit user identification enables the identification of a user
through actions that the user would carry out anyway (Jakobsson, Shi, Golle, & Chow,
2009) in an implicit interaction (Schmidt, 2000). Implicit user identification allows for
improvements in usability and user experience by customizing and personalizing the
user interface to the preferences of the user in the case of a shared device. Further,
it can be beneficial for granting access to personal information without the need to
enter a password, as they are laborious to enter and open to attack, since an immersed
Virtual Reality user can easily be observed by bystanders (George et al., 2017; Olade,
Fleming, & Liang, 2020). Thus, recent works explored the use of hand-held controllers
for implicit behavioral biometric user identification in Virtual Reality (Liebers, Abde-
laziz, et al., 2021; Pfeuffer et al., 2019).

Since we currently observe a shift from controller-based to hand and finger-based
interaction, we investigate how finger and hand tracking can be used to implicitly
identify users. In particular, we focus on basic input elements used to create user
interfaces in Augmented and Virtual Reality, such as buttons, sliders, and keyboards.
In a user study conducted with 16 participants in two separate sessions on two separate
days, we investigate how uniquely participants interacted with eight common input
elements in Augmented and Virtual Reality. The study explores the influence of the
device type (Augmented Reality vs. Virtual Reality), the number of hands used for
input (unimanual vs. bimanual), and the user interface elements associated with four
interactions (pointing vs. manipulating, see Aigner et al. (2012)) on user identification
(cf., Figure 1). Overall, we were able to identify users over two days with up to 95%
accuracy using an explainable machine learning approach. Upon further examination
of the data, we also found that two-handed input outperformed one-handed input,
particularly in Virtual Reality, and that Pointing Gestures performed better than
Manipulation Gestures.

Contribution Statement. The contribution of this work is twofold. First, we cre-
ate a prototype for implicit user identification using behavioral biometrics in AR and
VR that is based on the users’ hand tracking data, which is spatiotemporal data. We
investigate the users’ unimanual and bimanual interaction across two input gestures
concerning eight different user interface elements and report on a user study that is
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spread across two sessions on different days (N = 16). Second, we evaluate which inter-
actions benefit an identification system’s identification accuracy and provide insights
into our explainable machine learning classifier.

2. Related Work

User identification can generally be enabled in one of three ways: through knowledge-
driven approaches, token-based approaches, or biometrics (Jain, Flynn, & Ross, 2007;
Jain, Ross, & Nandakumar, 2011) In our case, however, we focus on behavioral bio-
metrics. Behavioral biometrics is a subset of biometrics that focuses on the behavior
of people (Jain et al., 2007). Since our approach makes use of standard HMDs for
both AR and VR as well as the users’ finger interactions, we focus on hand- and
head-tracking-based approaches to biometric identification.

2.1. User Identification on Head-Mounted Displays

The current state of the art for user identification with HMDs involves mechanisms
that are often derived from mobile phones, such as personal identification numbers
(PINs), passwords, or pattern locks (Yu, Liang, Fleming, & Man, 2016). However,
these traditional methods are susceptible to shoulder surfing attacks (George et al.,
2017). George et al. (2017) find that an attacker who observes an immersed VR user’s
password entry is able to correctly perceive up to 18 % of all passwords that users enter
with hand-held controllers . Olade, Liang, Fleming, and Champion (2020) confirmed
this number, as they found that an attacker has a success rate of 20 % for pattern
authentication in VR . Although this is quite a severe issue for VR, it is not exactly the
same case for AR. In contrast to VR, the user is not as immersed in virtuality when
wearing an AR-HMD; therefore, the user should be less susceptible to observation
attacks, as they can still perceive reality and any potential attackers.

Nevertheless, these problems motivate further work in the field. Behavioral biomet-
rics in particular have recently been investigated in this regard. Although it is not
a direct consequence, behavioral biometrics can often be implemented in such a way
that they are based on an implicit interaction (Schmidt, 2000). This implicit interac-
tion forms an implicit identification based on actions that the user would carry out
anyway (Jakobsson et al., 2009). Implicit identification not only relieves the user of
any explicit interaction with the identification system, but it also can be utilized con-
tinuously in the background (Deutschmann, Nordström, & Nilsson, 2013; Schneegass,
Oualil, & Bulling, 2016). A similar term was introduced by Corner and Noble (2002)
in the context of token-based systems, denoted as “zero-interaction authentication”.
These implicit properties allow the frequent adjustment of authentication models to the
ever-changing user behavior (Chauhan, Kwon, Hui, & Mascolo, 2020). These unique
benefits strongly motivate the development of further approaches to identification for
HMDs.

2.2. Biometrics in Augmented and Virtual Reality

For their unique benefits, an increasing number of biometric approaches were recently
explored. Most previous work focused on Virtual Reality due to its popularity, but most
principles are theoretically applicable to Augmented Reality HMDs as well. One unique
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benefit of head-mounted displays is the spatial relationship between the hand-held
controllers and the worn HMD, which can be used for user authentication as explored
by Pfeuffer et al. (2019). They state, in particular, that the users’ body relations and
distances as well as hand coordination are strong biometric features, where especially
the dominant hand is of high importance (Pfeuffer et al., 2019). Our work ties in closely
with their work for a number of reasons. First, they explored the general capabilities
of implicit biometric identification in VR, which we further by including AR as well.
Moreover, while they used hand-held controllers and ranged interactions (e. g., ranged
pointing or ranged typing), we set our focus on near interactions that users execute
with their hands and fingers, tracked by the HMD.

2.2.1. Task-driven Biometrics

Recently, new approaches that employ behavioral biometrics in relation to the execu-
tion of tasks, where the data elicited during the interaction is used for the purpose
of identification, have been investigated. This data is often spatiotemporal data. For
example, Kupin, Moeller, Jiang, Banerjee, and Banerjee (2019) showed that the task
of throwing a ball in Virtual Reality elicits highly individual spatial motion data. Ajit,
Banerjee, and Banerjee (2019) then conducted an extended analysis, yielding a higher
accuracy on a larger data set. Similarly, Miller, Ajit, Kholgade Banerjee, and Banerjee
(2019) created an extended solution for rejecting intruders and performed a within-
and cross-system evaluation (Miller, Banerjee, & Banerjee, 2020), again with regard
to the ball-throwing interaction. Later, Liebers, Abdelaziz, et al. (2021) explored the
interactions of sports-based tasks, such as bowling and archery, in VR including a
body normalization which increases identification accuracy across participants. In ad-
dition, Olade, Fleming, and Liang (2020) explored the task of grabbing, moving, and
dropping balls into different containers for the purpose of identification in VR.

2.2.2. Identification through Interaction with User Interfaces

Some of the earliest examples of identification through user interfaces originate from
keyboard (Monrose & Rubin, 2000) and mouse (Ahmed & Traore, 2007; Gamboa &
Fred, 2004) biometrics, which were bound to desktop computers. Later, as touch-
screens and mobile devices became prevalent, those core principles were transported
to this new form of user interface (Buschek, De Luca, & Alt, 2015). However, it is
not simply a new application of the older concepts. Touchscreens, for example, opened
new possibilities for biometric authentication, such as using finger pressure as a bio-
metric trait (Saevanee & Bhatarakosol, 2008). Currently, we are on the brink of again
switching the most common user interfaces. While in earlier times the evolution from
standard desktop computers to mobile devices already imposed a huge step, we are
now on the threshold of moving to three-dimensional, virtual user interfaces, such
as interface elements in VR, and holographic user interface elements. Thus, we see a
strong need to explore these interactions with novel interface elements, understanding
their possible association with behavioral biometrics.

2.3. Head-movement-based Biometrics

Miller, Herrera, Jun, Landay, and Bailenson (2020) recently explored the personal
identifiability of user tracking data with over 500 participants, whose head movement
was tracked as they observed 360◦ videos in VR. They found that they could identify
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511 participants correctly at an accuracy of up to 95% with a system trained on less
than five minutes of tracking data per person. Their number of participants exceeds
the regularly reported numbers of participants by a great margin (Sugrim, Liu, &
Lindqvist, 2019). With respect to external audio stimuli, Li et al. (2016) presented
“Headbanger”, a system they evaluated through experiments involving 95 participants
on an AR device. In “VRCAuth”, Sivasamy, Sastry, and Gopalan (2020) utilized two
different datasets to explore the idea of continuous authentication of users by their
spatial head movement data in VR. Alike, Mustafa, Matovu, Serwadda, and Muirhead
(2018) conducted a user study that identifies people based on their head movement
data in VR. Also, approaches exist that integrate user’s head and neck modeling to
implement a nodding interaction for unlocking their system (Wang & Zhang, 2021).
With “MoveAR”, Bhalla, Sluganovic, Krawiecka, and Martinovic (2021) presented
an approach to continuous biometric authentication for AR headsets (HoloLens) that
makes use of the spatial head movement data, whilst the participants performed certain
hand gestures, such as typing. The head has also been shown to be important for
gaze-based authentication (Liebers, Horn, Burschik, Gruenefeld, & Schneegass, 2021).
HMDs have also been used to implement gait-based biometric systems, as shown by
Shen et al. (2019), by utilizing the Google Glass.

2.4. Hand-tracking-based Biometrics

Before commercial off-the-shelf HMDs for Augmented and Virtual Reality were
equipped with hand and finger tracking technology, the “Leap Motion”1 was widely
used to explore hand-related biometric features. The device senses hand gestures at
an accuracy of 0.2mm for static and 1.2mm for dynamic setups (Weichert, Bachmann,
Rudak, & Fisseler, 2013) and recognizes a hand model consisting of several bones via
its sensors. Thereby, various systems for identification have been developed. One ex-
ample comes from the work of Maruyama, Shin, Kim, and Chen (2017), who explored
user authentication based on the hands’ skeletal features, such as the distance between
fingertips, as a biometric trait. Although their approach falls primarily into the domain
of physiological biometrics, behavioral-biometrics-based approaches exist as well. An-
other example is the approach by Chan, Halevi, and Memon (2015) that also includes
hand gestures as a form of behavior. However, in their discussion they state that hand
geometry matters the most for identification. The Leap Motion has also been utilized
to implement behavioral biometric authentication schemes, such as the handwriting
in the air (Kamaishi & Uda, 2016). Similarly, Xiao, Milanova, and Xie (2016) devel-
oped a Leap-Motion-based behavioral signature verification. Ataş Musa (2017) further
investigated a hand-tremor-based biometric recognition, testing whether hand tremor
is unique for humans. It was positively evaluated in a user study with five subjects.
Manabe and Yamana (2019) also developed a two-factor authentication system. They
used a numeric keypad and a Leap Motion to determine identities through physiolog-
ical features, such as the length of phalanges and metacarpals, but also by behavioral
finger speed.

Another work related to hand and finger tracking in VR is “ElectricAuth” by Chen
et al. (2021). In their work, the authors explored the feasibility of user authentica-
tion by externally actuating a user’s fingers through electric muscle stimulation and
capturing the output with an HMD. Although they capture finger movements, their

1Leap Motion by Ultraleap. https://www.ultraleap.com/product/leap-motion-controller/, last retrieved

on October 20, 2022.
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focus lies on the external actuation through electric muscle stimulation; hence, the
participants’ movements are induced by the system during the interaction. We regard
their approach as a functional biometric (Liebers & Schneegass, 2020).

To our knowledge, there is no previous work that uses the hand tracking data of
recent HMDs with interactions in Augmented and Virtual Reality for user identifica-
tion.

3. General Approach

In this work, we investigate to which extent we can identify users in Augmented and
Virtual Reality from their hand and finger-tracking-based interactions. Finger tracking
is associated with a huge amount of data, as the virtual hand objects consist of various
virtual bones (cf., Figure 1(c)). Each virtual hand object consists of 26 elements in
total, where each element is defined by positional and rotational coordinates. For
the different areas of the hand, we have the following number of elements: Thumb (4),
Index-, Middle-, Ring-, Little-Finger (5), Palm (1), and Wrist (1). This complex nature
seems very promising for creating a system that is able to distinguish users. Therefore,
we investigate how well user identification works in Augmented and Virtual Reality
concerning common user interface elements in two types of interactions: “pointing” and
“manipulation” gestures, as defined by Aigner et al. (2012). We implemented these two
gestures by four common user interface elements each and vary them for unimanual
and bimanual interaction (cf., Figure 2). As the user interface elements are not only
associated with a gesture but also with an interaction (e. g., how the arms need to
be moved for the interaction), we group them into four sets: “Button Interaction”
that contains button-press related user interface elements, “Keyboard Interaction”
which are related to complex keyboard interactions, “Horizontal Manipulation” (e. g.,
the translation of an object on a horizontal axis) and “Diagonal Manipulation”, the
manipulation on a diagonal axis. In our design, we follow the dominant usages of the
two gestures in previous work (Groenewald et al., 2016).

We created a software prototype that implements the user interface elements and
the associated tasks. It elicits the data of the user’s interactions which we then use
for a post hoc analysis to determine the separability of the data by each individual
person. We seek to use only one single code base that we can deploy to a head-mounted
Augmented and Virtual Reality device respectively, to ensure that both technologies
are as comparable as possible. For this reason, we opt for Microsoft’s Mixed Reality
Toolkit2 (MRTK), which facilitates the creation of one single software prototype in
Unity3D3 that then can be deployed to our two target devices in a user study. Thereby
we ensure that the user interface elements have the same positions, orientations, sizes,
and behaviors across both devices. For devices, we chose the Microsoft HoloLens 2 as
our AR device and the Meta Quest 2 as our VR device.

4. User Interface Elements for Interaction

This section describes our implementation of the three-dimensional user interface el-
ements and the finger tracking in Augmented and Virtual Reality. All of the interac-

2Mixed Reality Toolkit by Microsoft. https://github.com/microsoft/MixedRealityToolkit-Unity, last ac-

cess on October 20, 2022.
3Unity3D. https://unity.com, last access on October 20, 2022.
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Unimanual Bimanual

Pointing Gesture

Manipulation Gesture

Keyboard Interactions

Button Interactions

Horizontal Manipulation

Diagonal Manipulation

Button

Bimanual KeyboardUnimanual Keyboard

Slider

Slate

Reposition

Rescale

Context Menu

Figure 2.: The tasks and user interface elements that were implemented with the
MRTK with regards to the variables i) number of involved hands (unimanual vs.
bimanual) and ii) the user interface elements (Button Interaction vs. Keyboard In-
teraction vs. Horizontal Manipulation vs. Diagonal Manipulation). Button Interaction
and Keyboard Interaction originate from a Pointing Gesture and Horizontal Manipu-
lation and Diagonal Manipulation from a Manipulation Gesture.
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tions, virtual objects, and hand representations were implemented in Unity3D using
the Microsoft Mixed Reality Toolkit (MRTK). This combination allows the creation
of one prototype that can be deployed to both of our target devices, the Meta Quest
2 and the Microsoft HoloLens 2, for an identical code-wise behavior of the prototype.

4.1. Hand Tracking

The users’ hands are tracked by the hardware vendor’s finger tracking model in Aug-
mented and Virtual Reality. Both the HoloLens 2 and the Quest 2 devices employ
a device-specific finger tracking recognition that maps the users’ real hands into the
virtual environment. Both devices track the hands by default at 30 Hz. The hand
and finger tracking work in general through a machine learning model that uses the
device’s depth cameras (Han et al., 2020).

4.1.1. Hand Representation in Virtual and Augmented Reality

The users’ hands are visually represented in Virtual Reality (cf., Figure 1(c)). Within
the scope of this work, we used the default model that is provided by the MRTK to
display the hands to the user, which renders the hands as opaque objects without any
attached arms. All fingers are animated and the hand objects follow the position and
rotation of the user’s real hands.

In contrast to VR, the user can see their real hands in AR. Therefore, our work
does not add a visual model as a representation of the users’ hands. Still, the issues of
visual and spatial registration arise here. The holograms that the HoloLens 2 draws are
spatially registered at a certain point in 3D, but as they are rendered on the displays
in front of the users’ eyes, they overlap the hands visually. This effect happens because
the user’s gaze first falls through the display and, at a further point, to their hands.
To enable correct visual registration, we added an occlusion shader to the users’ hand
model in AR. This results in the hologram not being rendered over the hand, thereby
making the hands and the holograms correctly visually registered in 3D.

4.1.2. Press Cursor

To interact, the users’ hands need to touch the virtual object. As this is sometimes hard
to see, we added a “PokePointer” from the MRTK to the users’ hands. A PokePointer
is a small cursor denoted by a circle that is located near the index fingertip. It only
appears when an interactable object is nearby.

4.2. Elements Design and Tasks

We designed a unimanual and a bimanual version of four different user interface ele-
ments (see Figure 3).

4.2.1. Button Interaction

The first user interface element is a red button (3.5×3.5 cm) that responds to single
presses with the fingertips (cf., Figure 3(a)). For the unimanual input, the task was to
press the button. For the bimanual input, we opted for a context menu. The context
menu consists of a button and a group of three buttons, which is initially invisible and
only appears once the other button is pressed by the user (cf. Figure 3(e)). If the user
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holds the first button with one hand, the menu appears on the right. The task was to
first press the left-hand button to open the context menu and then to take a picture
by pressing the camera button on the right hand side.

4.2.2. Keyboard Interaction

The keyboard has a size of 55 cm by 30 cm, is tilted by 30◦, has a QWERTZ layout and
is an adapted implementation of an asset from Unity’s Assetstore4 (cf., Figure 3(d)).
We use this keyboard because the MRTK only provides access to the native system
keyboard, which differs in size and layout between the Quest 2 and HoloLens 2 devices.
We added a spell check to the keyboard which indicates a spelling mistake by switching
the users’ input to red color if the text entry is wrong. For the unimanual input, the
keyboard only registers letters from one finger press at a time whereas, for the bimanual
input, it supports the concurrent text entry of two fingers. The user has to enter the
sentence “The quick brown fox jumps over the lazy dog” which is a pangram, meaning
that it contains all letters of the English alphabet.

4.2.3. Horizontal Manipulation

The slider used for Horizontal Manipulation allows the user to input a number from a
fixed interval (cf., Figure 3(b)). It can take up to 13 different positions on a horizontal
axis 5 cm apart from one another. The slider implements a discrete behavior. To
complete this interaction, the slider has to be moved horizontally from position three
to position nine. For the bimanual input, a yellow cube with a width of 30 cm, a
height of 12 cm, and a depth of 15 cm needs to be repositioned by grabbing the edges
of the object with both hands. The user’s task was to move the yellow cube onto
the red circular target area, which has a radius of 6 cm. Both objects are initially 70
cm apart. The cube indicates its functionality by a glowing wireframe near its edges
that indicates a possible interaction. The interaction ends once the cube has been
successfully moved to the red target area.

4.2.4. Diagonal Manipulation

The slate is a 2D pane that can be scrolled with a Diagonal Manipulation gesture
by grabbing it with a pinch movement. It displays a checkered board that consists of
cells, where each cell has its position imprinted. The participant’s task was to slide
the bottom left cell (“H1”) into the upper right corner of the slate. The full movement
covers a distance of 70 cm. For the bimanual input, we designed a rescaling task in
which a coffee mug (10 cm x 12 cm x 10 cm) needs to be rescaled using both hands.
The mug is accompanied by a floating label that indicates its current scale ratio as a
decimal number. Its initial scale is “1” and needs to be changed by the users to “1.7”
by pinching the mug with two hands at the top corners of the object. The corners are
again indicated with a glowing wireframe that signalizes affordance to the rescaling
motion.

4VR Keyboard. https://assetstore.unity.com/packages/tools/input-management/vr-keyboard-95936,

last access on October 20, 2022.
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(a) Button. (b) Slider. (c) Slate. (d) Unimanual Keyboard.

(e) Context Menu. (f) Reposition. (g) Rescale. (h) Bimanual keyboard.

Figure 3.: Overview of the user interface elements for unimanual (a-d) and bimanual
(e-h) input. The respective user interface element of (f) and (g) are glowing wireframes
that appear when a hand is near the object to signalize affordance.

4.3. Data collection

Data recording takes place exclusively on the device by logging the position (coor-
dinates x, y, and z in the world space) and rotation (euler x, euler y, euler z) of all
objects in every rendered frame. These objects are the coordinates of the head, repre-
sented by the worn HMD, and the hands and the fingers of the user, as provided by
the device’s capabilities. The hands are represented by their anatomical features, i. e.,
each of the five fingers is also subdivided into its phalanges. For each phalange, we log
its positional and rotational coordinates as well.

Furthermore, besides the spatial data, we also log the timestamp, a unique frame
identifier, and an event column. The event column consists of all possible event call-
backs provided by the MRTK (e.g., ”ButtonPressStart” and ”ButtonPressEnd” events
for the button condition). The exact number and semantics of the events depend on
the particular MRTK asset. For the keyboard, we log the length of the entered string as
well as its value. Furthermore, once the interaction’s end condition was met (e.g., the
button was fully pressed and released), another marker was added to the event column.
As the logging is bound to the application’s frame rate, we obtain a sampling rate of
72 Hz for the Meta Quest 2 and 30 Hz for the Microsoft HoloLens 2.

5. Study

We verify our approach in a user study that took place in our lab across two sessions
over different days. We evaluate the elicited spatiotemporal data within an identifica-
tion system and also participants’ quantitative feedback.

5.1. Study Design

The study followed a within-subjects repeated-measures design and it was split into
two sessions that took place on two different days, sharing the same study design in
both sessions. All participants participated in both sessions of the study. The study ran
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for a timeframe of three weeks. We chose this split for two reasons. First, the results
obtained indicate that identification is possible across different days, as the user’s
behavior might subtly change in the meantime. Second, as the users had to take off
the HMD between days, the identification model cannot determine the user’s identity
by having them wear the HMD in a certain “odd” way. The independent variables of
this study are Device with two levels (Augmented Reality vs. Virtual Reality), and
Hands with two levels (unimanual vs. bimanual), and User Interface Elements with
four levels (Button Interaction vs. Keyboard Interaction vs. Horizontal Manipulation
vs. Diagonal Manipulation).

5.2. Apparatus

We used two different devices in the study, one for AR and one for VR. For AR, we
used the Microsoft HoloLens 2. The HoloLens 2 offers 6 Degrees-of-Freedom (DoF), a
hologram refresh rate that we set to 30 Hz, and native support for hand- and finger-
tracking. The diagonal field of view is 52◦ and it can operate wirelessly. For VR, we
employed the Meta Quest 2 device. The Quest 2 also offers 6 DoF, and a variable
display refresh rate that we set to 72 Hz for our study. Its display has a field of view
of 95◦ and it can also operate wirelessly.

The study took place in our lab, which is a room with 5.1×3.1 m with a ceiling
height of 3.1 m. Since the study part in AR takes place in the real lab environment,
we modeled the same room as a virtual environment for VR so that the virtual environ-
ment shares the same dimensions and furniture (e.g., dimensions, tables, computers,
and truss) alike the real laboratory (cf., Figure 1(a) and Figure 1(b)). Both devices
execute the same Unity prototype application, with the important difference that the
virtual room objects (e.g., the walls, furniture, and ceiling) are disabled in AR on
the HoloLens 2, as they are provided by the real environment, where the user moves
within.

To align the coordinate grids of the VR and AR HMD, we physically marked a
spot in the laboratory as the origin point of the coordinate system and took care to
initialize the HMDs at this specific point. Therefore, the coordinate grids for AR and
VR are identical. Moreover, the experimenter set the safety guard for the Quest 2 in
a way, that it aligns with the walls of the room. Due to the size of the room and the
positioning of the stimuli, no participant had to move near the boundaries of the safety
guard. Each of the user interface elements is located approximately 1.35 m above the
ground level for ergonomics, measured from its center point. To the left-hand side of
the user’s initial position, we set up a virtual whiteboard that describes the current
task within the study. After each task’s completion, the application instructed the
participant to move back to the origin point.

5.3. Procedure

The study took place under COVID-19 conditions, strictly following the local regu-
lations. All devices and touched surfaces were cleaned between participants and the
room was continuously aired. First, we welcomed the participants, explained the pro-
cedure and obtained written, informed consent from them, and explained that their
participation in the study could be aborted at any time without any detriments. We
also fully answered any questions that the participants had with regard to their par-
ticipation in the study and the procedure. Further, we informed the participants that
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their movements and behavior would be recorded in the study by the means of the
HMD (i. e., logging of any coordinate and in-app video recording) and as well by an
external video camera. The participants obtained a short introduction in the form of
a prerecorded video to the devices (Quest 2 and HoloLens 2). Then, the experimenter
assisted the participants in wearing the device (i. e., adjusting the straps of the head-
band and setting the inter-pupillary distance of the lens spacing on the Quest 2). For
the HoloLens 2, the first action was to calibrate the device to the participant’s eyes by
launching the integrated calibration routine so that the projected holograms are clear
to view.

After the initial setup, we tested two blocks, one for each device (AR and VR).
Each block consists of the counterbalanced eight interactions with the User Interface
Elements for unimanual and bimanual execution. The counterbalancing of the eight
interactions as well as the order of the two blocks was performed using a Latin Square
respectively. Once the desired number of repetitions was fulfilled per interaction, we
verbally asked the participants for their rating of two Likert scale questions on a scale
from 1 (strongly disagree) to 7 (strongly agree): i) “I found the interaction physically
highly demanding” and ii) “I found the execution of the interaction highly natural”.
After each block, the participants took the HMD off and answered the NASA Raw
Task-Load-Index (Raw TLX) questionnaire (Hart, 2006; Hart & Staveland, 1988),
rating the workload of the interactions and the System Usability Scale (SUS) ques-
tionnaire (John Brooke, 1996), rating the usability of the interactions.

Each interaction with any user interface element could be tried out by the partic-
ipants first, to familiarize themselves with the task. Then, each interaction with any
user interface element but the uni- and the bimanual keyboard was repeated for 12
trials each. The uni- and bimanual keyboard was tested for only 6 trials, as the interac-
tion is much more complex in comparison to the others. We counterbalanced the order
of the blocks and the order of the user interface elements and excluded the uni- and
bimanual keyboards from becoming a direct successor of each other. The procedure
was repeated in a second session without the questionnaires. The first session took
approximately 90 minutes to finish and the second session took about 60 minutes.

5.4. Ethics

The focus of this research lies on the identification of persons throughout their compre-
hensive spatial interaction data with virtual, three-dimensional user interface elements
in an implicit interaction. If the insights from this work are applied to a real-world
system, it is an absolute necessity that the users know about the utilization of the pro-
posed principles in any application. They furthermore should express informed consent
that their comprehensive interaction data is used in this particular way. We strongly
recommend any future reuse of the presented research to account for the principles
of user privacy in AR and VR (Adams et al., 2018; Pearlman, 2020). Biometric data
collection is not a unique attribute of AR and VR applications, but the scope of the
gathered information is on a new level in comparison to established, widespread de-
vices (Dick, 2021). Furthermore, all local regulations must be taken into account at
any time and proper precautions for data security should be met.

To conduct our user study, we followed the regulations of our institution and ob-
tained clearance from the institute’s ethics review.
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5.5. Participants

We recruited 16 volunteers (6f, 10m, 0d) from our university’s mailing list and social
media who were between 19 and 33 years old (M=25.62, SD=3.56). All of the partic-
ipants were right-handed. We also tested the participants for their dominant eye and
obtained four times “left” and twelve times “right”. Their mean height was 174.88cm
(SD=9.04cm, min=158cm, max=190cm), as reported on their ID card. Moreover, we
measured their arm length from the shoulder to the fingertips and obtained a result of
69.31cm on average (SD=4.36cm, min=60cm, max=76.5cm). Nine participants stated
that they had a form of visual impairment and all but two were completely corrected
during the study. In the other two cases, the participants confirmed that it would not
interfere with the study. We asked the participants for their previous experience with
VR on a 7-point Likert scale, where “1” corresponds to “I have never used VR before”
and “7” corresponds to “I experience VR on a daily basis”. The participants’ response
was a median value of 5 (IQR=5). We asked the same question with regards to their
experience with AR and again obtained a median value of 5 (IQR=5).

5.6. Quantitative Results

Besides the spatial data that we employ within our identification system (cf., Sec-
tion 6), we obtained several insights from our user study, including task completion
times, Likert items, and the Raw TLX and SUS questionnaires.

5.6.1. Task Completion Times

We tracked participants’ Task Completion Time (TCT) per each repetition of each
condition in our study. To better understand the influences on the user’s TCT that are
imposed by the unimanual and bimanual interaction and the user interface elements,
we aggregate the per-user TCT as the mean TCT of all repetitions of each interaction
with any user interface element. We apply the Aligned Rank Transform (ART-C)
procedure (Wobbrock, Findlater, Gergle, & Higgins, 2011) to the aggregated data
before performing an analyses of variance (ANOVA) with the within-subject factors
Device (AR vs. VR), Hands (unimanual vs. bimanual), and User Interface Element
(Button Interaction vs. Keyboard Interaction vs. Horizontal Manipulation vs. Diagonal
Manipulation).

We consider the effect of the two levels of Device (AR vs. VR) on the TCT. The
mean times for the different levels of Device are (in descending order): AR = 12.23
s (SD: 17.37) and VR = 11.43 s (SD: 15.73). To investigate the effect of Device on
TCT, we apply a one-way ANOVA on the aligned ranks, showing a significant effect
between conditions F (1, 225) = 26.05, p < .001.

We also seek to understand the effect of User Interface Elements with four levels
(Button Interaction vs. Keyboard Interaction vs. Horizontal Manipulation vs. Diagonal
Manipulation) on the TCT. The mean times for the different levels of User Interface
Element are (in descending order): Keyboard Interaction = 39.73 s (SD: 6.75), Hori-
zontal Manipulation = 3.22 s (SD: 1.82), Diagonal Manipulation = 2.97 s (SD: 1.49)
and Button Interaction = 1.43 s (SD: 1.33). We apply a one-way ANOVA on the
aligned ranks and find a significant effect between the conditions F (3, 225) = 5.93,
p < .001. Table 1 lists the results of the subsequent pairwise post hoc comparisons.

Furthermore, we also investigate the effect of the two levels of Hands (unimanual
vs. bimanual) on the TCT. Here, the mean times for the different levels of Hands
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Table 1.: Pairwise post hoc comparisons for investigating the interaction effect between
the independent variables Device and User Interface Elements (“Inter.”=interaction,
“Manip.”=manipulation and “M”=mean).

XR Pairwise Comparison (a vs. b) M(a) M(b) t p

AR Button Inter. vs. Keyboard Inter. 1.47 41.55 -21.37 < .0001
Button Inter. vs. Horizontal Manip. 1.47 2.95 -9.23 < .0001
Button Inter. vs. Diagonal Manip. 1.47 2.98 -8.65 < .0001
Keyboard Inter. vs. Horizontal Manip. 41.55 2.95 12.14 < .0001
Keyboard Inter. vs. Diagonal Manip. 41.55 2.98 12.72 < .0001

VR Button Inter. vs. Keyboard Inter. 1.39 37.88 -21.03 < .0001
Button Inter. vs. Horizontal Manip. 1.39 3.48 -10.28 < .0001
Button Inter. vs. Diagonal Manip. 1.39 2.96 -8.82 < .0001
Keyboard Inter. vs. Horizontal Manip. 37.88 3.48 10.75 < .0001
Keyboard Inter. vs. Diagonal Manip. 37.88 2.96 12.22 < .0001

are (in descending order): Unimanual = 12.03 s (SD: 17.21) and Bimanual = 11.64 s
(SD: 15.92). Therefore, we apply a one-way ANOVA on the aligned ranks, showing a
significant effect between conditions F (1, 225) = 7.76, p < .01.

We consider the interaction effects between the three independent variables (Device,
Hands and User Interface Elements). Here, we found an interaction effect between
Device and User Interface Elements with a two-way ANOVA F (3, 225) = 5.93, p <
.001 on the aligned ranks. Moreover, we found another significant interaction effect
between User Interface Elements and Hands with a two-way ANOVA F (3, 225) =
22.89, p < .001.

5.6.2. Individual Likert-Items

After completing any task during the study (e. g., after finishing the twelve button rep-
etitions), we asked the participants two questions: i) “I found the interaction physically
highly demanding” and ii) “I found the interaction highly natural”. Both questions
ranged on a Likert scale from 1 to 7, where “1” stands for “I strongly disagree” and
“7” stands for “I strongly agree”. The results are displayed in Figure 4.

We create a per-participant mean of all given responses and compare AR against
VR using paired Wilcoxon Signed-rank tests. We were not able to find significant
differences in the participants’ responses.

5.6.3. Standardized Questionnaires

After the participants finished either the Augmented or Virtual Reality block, we asked
them to answer the System Usability Scale questionnaire (John Brooke, 1996) and the
NASA Raw Task Load Index questionnaire (Hart, 2006; Hart & Staveland, 1988). The
results are illustrated in Figure 5.

5.6.3.1. Task Load Index. The participant responses to the NASA Raw-TLX are
shown in Figure 5(b). The resulting score for AR (Md=38.75, IQR=20.63) is sig-
nificantly higher than for VR (Md=31.67, IQR=18.33) with W = 106.5, Z = 1.99,
p = .049, indicating lower workload for VR than AR through a Wilcoxon signed-rank
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Figure 4.: Participants’ ratings of each interaction to the given questions in (a) and
(b) on a Likert scale of 1 (“strongly disagree”) to 7 (“strongly agree”). Outliers are
not displayed.

test.

5.6.3.2. System Usability Scale. The participants’ responses to the individual
SUS items are illustrated in Figure 5(a). The median SUS score across all participants
for AR is 63.75 (IQR: 63.75) and its mean value is 60.94 (SD: 19.30). For VR, we
determined a median SUS score of 77.50 (IQR: 77.50) and a mean of 78.91 (SD:
12.75). We then compare the acquired SUS scores for AR against the SUS scores for
VR using a paired Wilcoxon Signed-rank test and find a significant difference with
W = 4, Z = −2.6835, p = .0073, r = .4744.

Bangor, Kortum, and Miller (2009) state that they determined a mean SUS score of
69.5 over 273 previous works which denotes an acceptable usability. We also compare
our acquired SUS scores for Augmented and Virtual Reality against this hypothetical
value using a Wilcoxon test (AR: W = 9, p = 0.9184 and VR: W = 3, p = 0.3574),
but were unable to find a significant difference here.

6. Analysis of Tracking Data

To determine the identities of our users, we use a closed-set Random Forest multi-
class classifier. This classifier trains on the data from the first session of our study and
predicts the identities based on the data elicited during the second session.The pre-
dictions of the second day were only used for validation, showing that reidentification
is possible across days.

6.1. Preprocessing and Feature Sets

To preprocess our elicited data from the study, we first split the data stream by in-
teraction. Any interaction has a defined beginning and end (e. g., the button being
fully pressed) and we can split the stream of data into segments every time each
repetition (i. e., each study trial) ends. Next, we want to make our elicited data invari-
ant to the global coordinate frame. Therefore, we subtract all rotational coordinates
(“rot.x”, “rot.y” and “rot.z”) and the positional “pos.x” and “pos.z”-coordinates from
the respective initial coordinates and only leave the “pos.y”-coordinate intact, which
corresponds to the level of the HMD above ground level (i. e., the user’s height). At
last, we apply a modulo 360 function to all rotational coordinates, as they otherwise
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Table 2.: Table of all evaluated Feature Sets with their descriptions and cardinali-
ties (Card.). Any object consists of three positional coordinates (“pos.x”, “pos.y” and
“pos.z”) and three rotational Euler angles (“rot.x”, “rot.y” and “rot.z”). The abbrevi-
ations “I” and “T” stand for the Index Finger and Thumb respectively, “O” stands for
“Other Fingers” (i. e., Middle Finger, Ring Finger and Little Finger). The subscript
“Tip” indicates, that only the fingertip is taken into account, while “All” denotes that
all finger-related objects of the model are considered (e. g., phalanges), including the
fingertip.

F.-Set F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Card. Unim. 6 6 24 12 42 30 126 12 30 18 48 36 132

Card. Bim. 6 12 48 24 84 60 252 18 54 30 90 66 258

HMD × × × × × × ×
ITip × × × × × × × × × × × ×
IAll × × × × × ×
TTip × × × × × × × ×
TAll × × × ×
OTip × × × ×
OAll × ×
Palm & Wrist × ×

would possibly contain negative values. This approach makes the coordinates of the
users invariant to the global coordinate frame so that we do not classify their change
in position concerning their origin or have similar side effects.

In the next step, we take these segments and calculate the mean, min, max, and
standard deviation of all given features. As a result, we obtain four floating point
values that represent each feature, forming our feature vector.

We implemented our preprocessing for two reasons. First of all, we followed the work
of Pfeuffer et al. (2019), who chose a similar preprocessing and feature transformation.
Second, by generating such feature vectors we obtain a flattened vector which in turn
has the same shape for every elicited sample. The unified shape is necessary for the
classifier. The feature vector consists of a variable amount of features, depending on
the selected Feature Sets. We test multiple combinations by selecting different features
from the available set of objects. In general, each hand consists of 26 objects and each
object is represented by three positional coordinates (“pos.x”, “pos.y” and “pos.z”)
and three rotational Euler coordinates (“rot.x”, “rot.y” and “rot.z”). For bimanual
interactions, we always include both hands, while for unimanual interactions, we only
include the dominant hand.

When a hand is outside the sensors’ field of view of the device, it cannot be tracked.
Hence, we set the tracked values to NaN (not a number). Our mean, min, max, and
standard deviation aggregate functions ignore NaN values.

We then select multiple Feature Sets from the overall given data, according to
Table 2.

6.2. Model Definition

We chose a Random Forest classifier as our classifier for two reasons. First, it is in
line with the approach of Pfeuffer et al. (2019) and second, the Random Forest is
able to explain the features it uses for its classification predictions. We use the default
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Figure 5.: Participants’ ratings of (a) the System Usability Score (SUS), (b) the Raw
NASA Task Load Index (TLX), and (c) the individual Likert items “Q1” and “Q2”.
Outliers are not displayed. Please note that higher scores do not always indicate better
ratings.

hyperparameters by scikit-learn (Pedregosa et al., 2011) but set the “n estimators”
variable to 5000 and train it with the feature vectors that we obtained by aggregating
each elicited feature from the study with the mean, min, max, and standard deviation
aggregation functions.

We train one Random Forest per Feature Set, per user interface element, and per
Augmented and Virtual Reality device with the data obtained during the associated
study condition from the first session (i. e., one Random Forest was trained per entry
in Table 3). We keep the study data strictly separated by these conditions.

We evaluate the Random Forest based on its reported accuracy values. As the
amount of data per class and the amount of data per session is strictly balanced, no
skew of accuracy is introduced. Alike other conventional Random Forest models, ours
is a “closed-set” classifier, which means that it predicts one class out of a given set of
known classes, where the classes correspond to user identities in our case.

6.3. Model Evaluation Results

In this section, we report the identification results of our classifier, i. e., the accuracy
of identifying individuals by the given hand tracking data. Moreover, we discuss the
features most relevant to the Random Forest model.

6.3.1. Identification Results

The overall identification results of our Random Forest classifier are listed in Table 3.
Each accuracy was calculated by validating the Random Forest classifier that was
trained with data from the first session of the study with data from the second session
of the study per Feature Set.

The Feature Set F0 acts as the baseline Feature Set that only consists of the head.
It achieves a mean accuracy of 0.55 for AR and 0.52 for VR. We identify F6 as the
highest scoring Feature Set in the group of non-head including Feature Sets (F1-F6).
At mean accuracies of 0.53 for AR and 0.58 for VR, it offers the highest accuracy at
0.88 again for the bimanual keyboard in AR and 0.83 in VR. It contains all the virtual
bones and fingertips of the hand. F10 yields the highest mean accuracy for the Feature
Sets including hand and head data (F7-F12). It results in an accuracy of 0.63 for AR
and 0.64 for VR. Moreover, it contains the interaction that was classified with the
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Table 3.: Overview of all acquired accuracies for all Feature Sets per user interface
element in Augmented and Virtual Reality, accompanied by a mean accuracy over
all eight interactions per Augmented and Virtual Reality. The highest scoring Fea-
ture Sets, determined by their mean accuracy of Augmented and Virtual Reality, are
marked in bold. “C.-Menu” stands for the Context Menu interaction, “Uni.-Keyb.”
and “Bim.-Keyb.” for the unimanual and bimanual keyboard respectively. The proba-
bility of a random guess is 1/16 = 0.0625 and a darker cell shading indicates a higher
value.

Button C.-Menu Reposition Rescale Slate Slider Uni.-Keyb. Bim.-Keyb. Mean acc.
F.-Set AR VR AR VR AR VR AR VR AR VR AR VR AR VR AR VR AR VR

F0 0.54 0.52 0.45 0.36 0.55 0.60 0.42 0.59 0.69 0.42 0.44 0.46 0.58 0.64 0.72 0.55 0.55 0.52

F1 0.35 0.45 0.46 0.51 0.42 0.49 0.47 0.51 0.43 0.39 0.33 0.43 0.34 0.40 0.80 0.73 0.45 0.49
F2 0.43 0.49 0.43 0.55 0.46 0.49 0.50 0.55 0.44 0.43 0.47 0.41 0.43 0.44 0.89 0.75 0.51 0.51
F3 0.51 0.53 0.43 0.57 0.45 0.53 0.49 0.58 0.51 0.43 0.33 0.45 0.50 0.57 0.82 0.84 0.51 0.56
F4 0.47 0.44 0.44 0.49 0.40 0.61 0.44 0.57 0.47 0.37 0.37 0.48 0.44 0.50 0.78 0.78 0.48 0.53
F5 0.45 0.48 0.51 0.60 0.43 0.58 0.47 0.57 0.52 0.41 0.35 0.46 0.65 0.54 0.76 0.76 0.52 0.55
F6 0.48 0.49 0.46 0.64 0.42 0.60 0.47 0.60 0.56 0.42 0.34 0.48 0.65 0.55 0.88 0.83 0.53 0.58

F7 0.57 0.62 0.47 0.56 0.49 0.59 0.57 0.66 0.72 0.48 0.53 0.49 0.70 0.62 0.93 0.78 0.62 0.60
F8 0.55 0.64 0.45 0.64 0.48 0.64 0.58 0.65 0.70 0.51 0.53 0.53 0.58 0.51 0.95 0.82 0.60 0.62
F9 0.49 0.45 0.46 0.57 0.43 0.61 0.48 0.59 0.59 0.52 0.31 0.56 0.58 0.54 0.83 0.78 0.52 0.58
F10 0.63 0.61 0.47 0.64 0.48 0.63 0.61 0.66 0.70 0.50 0.51 0.53 0.72 0.64 0.95 0.88 0.63 0.64
F11 0.44 0.46 0.48 0.49 0.41 0.64 0.39 0.59 0.61 0.48 0.30 0.45 0.59 0.58 0.81 0.79 0.50 0.56
F12 0.54 0.61 0.47 0.69 0.43 0.63 0.48 0.63 0.66 0.50 0.42 0.57 0.73 0.64 0.86 0.83 0.57 0.64
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Figure 6.: Per-participant recall rates obtained from the Random Forest classifier for
all User Interface Elements. The colors indicate values obtained from the Feature Sets
F0, F6 and F10.

highest single accuracy for Augmented and Virtual Reality, the bimanual keyboard
(0.95). F10 consists of the head and all virtual bones of the index finger and thumb,
including the fingertip.

6.3.2. Feature Importances

We take a closer look at the most important features that the Random Forest clas-
sifier uses to distinguish between participants for the highest scoring Feature Sets F6
and F10. We do so, by examining scikit-learn’s Random Forest through the “permuta-
tion importance”-function with ten repetitions, using permutation feature importance.
The permutation performs on the basis of our feature vector that consists of the values
obtained from the aggregate functions mean, minimum, maximum, and standard de-
viation for each feature in our recorded time series. As the cardinalities of the Feature
Sets are extensive, we discuss only the ten most important features that we obtain from
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the Random Forest and since the aggregate functions in the feature vector are hard to
interpret on their own, we calculate a feature-wise mean value over all four aggregate
functions and all user interface elements respectively. We then create a descending
ranking of feature importance and focus on the ten best features.

We look into the most important features for the unimanual and bimanual inter-
action for Feature Set F6 and find that components of all fingers are equally repre-
sented. For the interactions with a Pointing Gesture, we find that they only consist
of rotational coordinates, as all positional coordinates are absent within the ten most
important features for the unimanual interaction and also for the ten most important
features for the bimanual interaction. We furthermore see, that in these 20 features,
a “rot.x” feature of the fingers is encountered 9 in 20 times. As the “rot.x”-axis cor-
responds to the “roll” of the hand, we believe that this is an important behavioral
aspect. All 11 other features consist of “rot.y” and “rot.z” components that denote
the yaw and pitch respectively.

For the Manipulation Gesture in F6, uni- and bimanual, we find that these as well
consist only of rotational features, but “rot.x” exists only in 2 out of 20 entries. All
the other features consist of “rot.y” and “rot.z”, therefore, for these interactions we
mainly see an individual change in the pitch and yaw of the hands. For bimanual
interactions, the finger elements of the non-dominant hand are equally represented as
for the dominant one.

For the Feature Set F10 the highest rated two most important features are head-
related, in particular, “Head.pos.y” and “Head.rot.z”. “Head.pos.y” directly symbol-
izes the height of the HMD above the ground, i. e., the participants’ height. Also,
“Head.rot.z” is the pitch of the head, i. e., whether they tilted their head down or up.
Both features also are directly related. Since our user interface elements were always at
the same height above the ground, a taller person had to tilt their head further down,
explaining, why both features are important. Yet, it needs to be mentioned that an im-
portant feature does not necessarily yield an increased predictive accuracy (Breiman,
2001). This is encountered for both, unimanual and bimanual interactions in F10. All
other features are finger related.

6.3.3. Effects on Recall Rate

To better understand the influences on the classifier’s accuracy that are imposed by
the independent variables, Device with two levels (Augmented vs. Virtual Reality)
Hands with two levels (unimanual vs. bimanual interaction) and the User Interface
Elements with four levels (Button Interaction vs. Keyboard Interaction vs. Horizontal
Manipulation vs. Diagonal Manipulation), we aggregate the per participant’s recall
values on which the accuracies reported in Table 3 are based on (see Figure 6). We again
apply the Aligned Rank Transform (ART-C) procedure (Wobbrock et al., 2011) to the
aggregated data before performing an analysis of variance (ANOVA) on the aligned
ranks. For pairwise post hoc comparisons, we used Holm-Bonferroni corrected t-tests.
In the following, we report only the significant results. We do so, for three Feature
Sets: F0, which acts as a baseline, including only the head, and F6 and F10, which are
the highest scoring ones containing hand tracking data, including and excluding the
head respectively.

6.3.3.1. Feature Set F0. We consider the interaction effect between between De-
vice, User Interface Elements and Hands. The mean recall rates for the different levels
of Device in descending order are 0.55 (SD: 0.37) for Augmented Reality and 0.52 (SD:
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0.41) for Virtual Reality. For the four different levels of User Interface Elements, the
mean recall values are 0.47 (SD: 0.38) for Button Interaction, 0.62 (SD: 0.37) for Key-
board Interaction, 0.51 (SD: 0.41) for Horizontal Manipulation and 0.53 (SD: 0.41) for
Diagonal Manipulation. For the two different levels of Hands, we obtain a mean recall
value of 0.54 (SD: 0.39) for unimanual interaction and 0.53 (SD: 0.39) for bimanual
interaction. We apply a three-way ANOVA on the aligned ranks and find a significant
interaction effect between the conditions (F (3, 225) = 3.04, p = .03), but any post hoc
pairwise comparison did not reveal a statistically significant difference.

6.3.3.2. Feature Set F6. Furthermore, we also investigate the effect of the two
levels of Hands (unimanual vs. bimanual) on the Recall rate in F6, which is the best
Feature Set excluding the head object. The mean recall values are (in descending
order): 0.50 (SD: 0.38) for unimanual and 0.61 (SD: 0.41) for bimanual interactions. We
then investigate the effect of Hands on the recall rate by applying a one-way ANOVA
on the aligned ranks, showing a significant effect between conditions (F (1, 225) =
5.96), p = 0.0153). We found that bimanual interactions (M = 0.61, SD = 0.41)
provide significantly higher recall rates than unimanual interactions (M = 0.50, SD =
0.38), F (1, 225) = 5.96, p = .0153). We also consider the effect of the four levels of
User Interface Elements (Button Interaction vs. Keyboard Interaction vs. Horizontal
Manipulation vs. Diagonal Manipulation) on the recall rate. The mean recall rates
for the different levels of User Interface Elements are: 0.52 (SD=0.39) for Button
Interaction, 0.73 (SD=0.33) for Keyboard Interaction, 0.46 (SD=0.41) for Horizontal
Manipulation and 0.52 (SD=0.40) for Diagonal Manipulation. A one-way ANOVA
on the aligned ranks finds a significant effect within the User Interface Elements
conditions, F (1, 225) = 5.28, p = .0015. The pairwise comparison found that Keyboard
Interaction produced statistically significant higher recall rates compared to Button
Interaction, t(225) = −2.76, p = .0318, Horizontal Manipulation, t(225) = 3.816,
p = .0011, and Diagonal Manipulation, t(225) = 2.65, p = .0344.

6.3.3.3. Feature Set F10. We found statistically significant differences within the
User Interface Elements, F (3, 225) = 4.80, p = .0029. The mean times for the different
levels of User Interface Elements are (in descending order): 0.59 (SD: 0.41) for Button
Interaction, 0.79 (SD: 0.33) for Keyboard Interaction, 0.54 (SD: 0.41) for Horizontal
Manipulation and 0.62 (SD: 0.37) for Diagonal Manipulation. The pairwise comparison
yields significant differences for Button Interaction vs. Keyboard Interaction, t(225) =
−2.69, p = .0390, and Keyboard Interaction vs. Horizontal Manipulation, t(225) =
45.72, p = .0019.

6.3.4. Identification Accuracy during shorter Keyboard Interactions

Next, we investigate how the high Task Completion Time for the keyboard interaction
influenced the identification accuracy. To do so, we re-evaluate the Random Forest for
the unimanual and bimanual keyboard tasks with shorter excerpts of the interactions,
where we perform the re-evaluation with a subsequently increasing amount of entered
key presses. First, we re-train the Random Forest only with the very first key press
and in the next step with the first and second key presses. Then we proceed with the
first, second, and third key presses and repeat this procedure until we meet 43 key
presses which is the desired input length of the pangram. We then take the results of
all four Random Forests (Augmented and Virtual Reality × Unimanual and Bimanual
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Figure 7.: Identification accuracy of the unimanual/bimanual keyboard in AR and VR
over the number of entered characters.

Interaction) and display the results in Figure 7.

7. Discussion

In this section, we discuss our findings. We mainly focus on aspects that are important
for user identification but compare Augmented and Virtual Reality as well.

User identification based on head-mounted displays and hand tracking is promising.
We see from our results, in particular from Feature Set 10, that user identification
based on hand tracking data is possible to a large extent. The best method is the
bimanual keyboard, which performs better in AR (95% accuracy) than in VR (88%
accuracy; cf., Table 3). We find for Feature Set 6 that the accuracy of the keyboard
is significantly higher than any other user interface element. For Feature Set 10, the
keyboard’s accuracy is significantly higher than the interface elements associated with
Button Interaction and Horizontal Manipulation. Here, we were unable to show a
significant increase over Diagonal Manipulation that follows the keyboard closely in
Table 3.

Bimanual interactions yield more individual data than unimanual interactions. Al-
though this appears to naturally be the case, as it is expected for two hands to provide
more data than one hand, we can also draw this conclusion from the data of Table 3.
Here, we see a mean increase of 10% identification accuracy for the bimanual interac-
tions compared to unimanual. For F6, which excludes the head, this poses a significant
increase in the recall rates.

The head is a strong biometric feature. The head, as tracked by the HMD, is a
strong biometric feature as suggested by the literature (cf., Section 2.3). We can see
this from the increase in identification rate in F10 and also at the strong baseline that is
imposed by F0. Moreover, for F10, the Random Forest classifier places the head-related
positional features amongst the most important ones. Here, in particular, the users’
height, as denoted by the “pos.y”-coordinate, has a major influence. Nevertheless,
the hands perform similarly well, as can be seen by the mean accuracy of F6 vs. F0
(cf., Table 3). However, to acquire the highest possible identification rate, the head
is a crucial element, as suggested by previous literature as well (Liebers, Horn, et al.,
2021; Mustafa et al., 2018; Sivasamy et al., 2020).

The performance of the Keyboard is time-related. Keyboards are in general associ-
ated with highly individual behavior during the interaction, as previous works sug-
gest (Buschek et al., 2015; Monrose & Rubin, 2000). With an accuracy of up to 95%
our results yield similar performance as presented in related work for traditional and
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virtual keyboards. The performance of the keyboard in our research outshines the
performance of any other user interface element significantly, except Diagonal Ma-
nipulation for F10, as we were unable to find a significant effect there. However, this
high accuracy is also related to the significantly longer interaction times. The high
performance of the keyboard is mainly met after 10 key presses. We can see this ef-
fect when we reevaluate our keyboard classifiers (cf., Figure 7). Therefore, we would
argue that approximately ten seconds of keyboard interaction is enough to acquire an
almost maximized identification rate. This rate can, of course, be increased when a
more elaborate feature engineering is taken into account.

Hand-based interactions yield more individual data than hand-held controllers. Over-
all, we took a similar approach as Pfeuffer et al. (2019) in terms of study design, pre-
and feature processing and classification. In their work, they implemented a ranged
pointing task, a near-interaction grabbing task, a walking task, and a ranged typing
task that were performed by 19 participants through hand-held controllers across two
study sessions. In general, our work is most comparable with their grabbing task, as
all the other tasks were performed from a distance with hand-held controllers, while
we only use near-interactions with the user’s hands. Here, one large difference lies
within the hand-held controller providing fewer features, as the controller provides
only one positional and rotational set of coordinates. However, the hand is composited
of various virtual bones, which results in a multitude of captured values.

We saw for our data that if we exclude the head (F6), mainly the rotational coor-
dinates of the hands and fingers are associated with high importance by the Random
Forest classifier. Here, the positional coordinates play almost no role in the top-ten
most important features. This is interesting, as hands can provide more rotational co-
ordinates in comparison to hand-held controllers, but the rotation appears to be more
important than the position. This certainly opens up a new dimension, in particular
regarding previous findings of Pfeuffer et al. (2019). As in their work, we form similar
feature vectors and the Random Forest classifier differs only in one hyperparameter
(i.e., the number of estimators: 100 vs. 5000). We chose this larger number because
our largest feature vector has a size of 1032 aggregated features. For increased ex-
plainability, we use Euler angles, whereas they use Quaternion angles. Although our
base chance is 0.99% higher compared to theirs (Pfeuffer et al., 2019), we generally
see an increased accuracy in our work. Their optimized result for the “grabbing” task
is reported as 45.84%, which is surpassed by all accuracies that we determine in F10.
For F6, which excludes the head, only the reposition and slider tasks in AR and the
slate task in VR yielded lower accuracies. We, therefore, believe that the hands as an
input modality yield much more unique data, which enables a better distinguishment
between people, than hand-held controllers.

Capabilities of our Behavioral Biometric Model and Approach. We evaluated our
Random Forest classifier on the data set that we elicited during our user study and
the acquired accuracy values within a range of 30% (Slider in AR for F11) to 95%
(Bimanual Keyboard in AR for F8 and F10), depending on the task, device and
Feature Set. The knowledge-driven authentication method of entering a password is
connected to a failure rate of 10% (Brostoff & Sasse, 2003). Although these values
are not exactly comparable (e. g., due to differences in input modality, sample size,
and a slightly different underlying problem), it still shows that in many cases the
employment of a password-based authentication scheme exceeds the capabilities of
our model. However, this is expected for several reasons. First, our approach focuses
on the identification problem instead of authentication through verification (Jain et
al., 2007). Thereby, our model yields a predicted identity as output instead of a binary
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“accept” or “reject”. Identification is in comparison more convenient for users, as
otherwise, users have to claim an identity beforehand, such as by selecting an account
they want to authenticate with (Jain et al., 2007). Second, the proposed scheme is
intended to be used in an implicit interaction and thus is suitable for “continuous
identification” (Jakobsson et al., 2009; Traoré & Ahmed, 2012). At last, it also needs
to be kept in mind that entering a password takes up considerable time in VR as George
et al. (2017) for example state a mean value of 2.95 s for a four-digit PIN entry with
controllers, whereas our interactions are intended to be part of an implicit identification
scheme, where the determined interaction is a byproduct of regular interaction with
the user interface. It thereby does not explicitly demand time from the user. The
implicit employment within a continuous scheme allows for frequent re-identification
of users that does not bother the user and can be used in a probabilistic scheme,
which can also be associated with an increase in security (Traoré & Ahmed, 2012).
Biometrics, in general, can also be used as a complement to passwords instead of a
replacement (Hamid, 2015), which can still be requested as a fallback authentication
method. Also, we believe that the employment of a deep learning model could increase
the accuracy beyond the capabilities of the Random Forest in future work, hence we
release the data elicited in the study to the public.

Augmented Reality vs. Virtual Reality. From our participants’ feedback to our ques-
tions and questionnaires, we see that VR is associated with significantly higher usabil-
ity, as denoted by the SUS, in comparison to AR. Although we created one code base
and deployed the same application to both AR and VR devices, participants strongly
preferred the interactions and hand tracking in VR.

Observations from the study show that participants’ gestures were more often mis-
recognized in AR. Although our prototype for AR was rated below an acceptable
usability score, we were unable to find a significant effect in this rating. Judging from
a standpoint of user identification, AR on Head-mounted displays is on approximately
the same level of identification accuracy as VR, even though the accuracy values vary
minimally per condition, most likely due to individual noise. We furthermore were
unable to find significant differences between the acquired recall rates of AR and VR.

Stability of the approach. The “stability” of a biometric approach refers to the fact
that the biometric maintains its distinctiveness over time (O’Gorman, 2003). Our user
study and the associated split of data, where we trained with the first session and
validated with the second session, proves that the human spatiotemporal behavior
during the interaction with the user interface elements retains its uniqueness over
a short period of time. Longer periods were, to the best of our knowledge, not yet
extensively covered in research with the exception of Miller, Banerjee, and Banerjee
(2022) who recently reported on an investigation in the order of 7 to 18 months for
the task of throwing a ball in VR.

8. Conclusion

In this work, we show that implicit identification of users by their spatial motion data
elicited from their hands is possible in AR and VR with an accuracy of up to 95%.
We evaluate in total eight different universal user interface elements that respond to
nearby finger interactions in 3D and see that the keyboard in particular stands out.
Still, we find that the keyboard’s high accuracy rating is primarily associated with a
high interaction time. Besides the keyboard, Diagonal Manipulation also appears to
be very feasible for user identification. We show and evaluate these performances for
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16 participants, whose data was elicited in a lab study that took place in two ses-
sions on different days. Furthermore, we provide insight into our explainable machine
learning approach (Random Forest) and show that the rotational coordinates of the
hands are especially important. However, we also find that the head on its own is
a strong biometric. Although AR is associated with a number of issues, we also see
that the identification rate is only slightly impacted. Therefore, we believe that both
technologies are very suitable for eliciting highly individual data from the hands and
fingers.
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