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(a) Printed map. (b) In-view visualization. (c) Out-of-view visualization. (d) Combined.

Figure 1: Different visualization strategies to locate nearby physical objects with the Microsoft Hololens. Best seen in color.

ABSTRACT
Locating objects in physical environments can be an exhausting
and frustrating task, particularly when these objects are out of the
user’s view or occluded by other objects. With recent advances in
Augmented Reality (AR), these environments can be augmented
to visualize objects for which the user searches. However, it is cur-
rently unclear which visualization strategy can best support users
in locating these objects. In this paper, we compare a printed map to
three different AR visualization strategies: (1) in-view visualization,
(2) out-of-view visualization, and (3) the combination of in-view
and out-of-view visualizations. Our results show that in-view vi-
sualization reduces error rates for object selection accuracy, while
additional out-of-view object visualization improves users’ search
time performance. However, combining in-view and out-of-view
visualizations leads to visual clutter, which distracts users.
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1 INTRODUCTION
Searching for physical objects is a problem with which we are con-
stantly confronted (e.g., as a child on an Easter egg hunt). Here,
locating objects can become a difficult task, because objects might
be occluded by other objects, out of view, or hard to distinguish
from their environments. For example, a service technician who
maintains a product (e.g., a robot arm) needs to understand the
locations of relevant devices within a certain area of a manufac-
turing plant. These objects can be occluded by other objects in the
environment (e.g., repositories), and the order with which these
objects have to be dealt can change and may only be known by a
technician. Further, it is not uncommon that the service technician
has to deal with multiple objects that are located very close to each
other (e.g., several peripheral devices) [30]. Another example is a
network engineer that has to resolve hardware issues in a server
room. In this case, the engineer has to locate the relevant hardware
quickly to avoid long downtimes. Here, the environment, with
which engineers are confronted is different every time and several
sever racks are often distributed within the server room, rendering
most objects occlude. However, the possible locations of relevant
hardware is defined by the positions of the server racks, reducing
the number of possible locations for relevant nearby objects.

With recent advances in Augmented Reality (AR) technology
(e.g., rendering quality [40], refresh rate [23], or registration ac-
curacy [27]), environments can be augmented to show additional
information to the user. As it is experienced in a head-mounted de-
vice, people can use such technologies hands-free and while mobile.
This has advantages in many spatial working environments where
machines have to be operated by hand, or in situations in which the
user is moving. Furthermore, the head-mounted device allows one
to visualize the locations of surrounding objects from an egocen-
tric perspective. Thereby, the cognitive load required to mentally
integrate the displayed information into the user’s perspective is
low [4, 10, 26]. Additionally, in some scenarios, a head-mounted
AR device can easily be combined with safety helmets that workers
are required to wear (e.g., in manufacturing plants). Since digital
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content presented on an Augmented Reality device is already eas-
ily distinguishable from the real world [31], it is well-suited for
presenting visual cues to the user.

In previous work, different techniques have been investigated
for guiding to objects in view in AR (e.g., [6, 37]) or visualizing
occluded objects (e.g., [11, 35]). However, due to the limited field
of view of current AR devices, it remains unclear if visualizations
for objects on screen are sufficient for locating real-world objects,
especially if those objects are spatially distributed in the environ-
ment. Additionally, previous work either focuses on objects that
are not occluded [2, 21] or on a single object at a time [6, 37]. On
the contrary, visualizing the positions of out-of-view objects has
already been well explored in previous work (c.f., subsection 2.2).
However, related work shows that these techniques are not suffi-
cient for guiding to spatially distributed objects because they do not
assist in identifying these objects when they appear on the user’s
screen [12]. Here, we hypothesize that a combination of in-view
and out-of-view visualization techniques works best for locating
physical objects in the environment. However, to our knowledge,
it has not been investigated in how far the different visualization
strategies (in-view, out-of-view, and their combination) influence
user performance for locating physical objects in AR.

In this paper, we investigate the influence of the different visual-
ization strategies on locating physical objects in AR. To compare
the different visualization strategies, we select one representative
visualization technique for each strategy. To do so, we compare
different in-view visualization techniques in a user study to iden-
tify the best-performing technique. The representative technique
for the out-of-view visualization strategy is selected from previ-
ous work. Thereafter, in a second user study, we compare the four
different visualization strategies: (1) printed map (baseline condi-
tion), (2) in-view visualization (best-performing technique from
the first user study), (3) out-of-view visualization (best-performing
technique from related work), and (4) the combination of in-view
and out-of-view visualizations. We evaluate the different strategies
using quantitative measurements such as search time performance
and object selection accuracy. Our research contributions include:

(1) Comparison of four different in-view visualization tech-
niques in head-mounted Augmented Reality.

(2) An evaluation and thereby comparison of four different visu-
alization strategies (printed map vs. in-view vs. out-of-view
vs. combination) for locating physical objects in AR.

2 RELATEDWORK
We discuss the related work regarding: (1) visualization of objects
in view and (2) visualization of objects out of view. Thereby, we
want to identify the best-performing technique for each strategy.

2.1 Visualization of In-View Objects
Guide to Objects in View. Augmented Reality allows one to over-

lay digital content onto the real world, in order to alter perception
of it [3]. In the last decades, researchers have focused on improv-
ing tracking, interaction, and display technologies [44] to create
more immersive experiences. However, due to the low degree of
fidelity which is influenced by rendering quality [40] or refresh
rate [23], users can still distinguish between digital content and

the real world [31]. While this inhibits full immersion, it is helpful
for shifting the attention of user to physical objects in the environ-
ment. In the work ’Attention funnel’ by Biocca et al. [6], the authors
demonstrated that their general purpose AR interface technique
interactively guides the attention of the user to any object, person,
or place in space. This approach is not limited to physical objects
in-view, but supports only one object at a time. Schwerdtfeger and
Klinker used a similar technique to support order picking with
Augmented Reality [37]. In this work, a red frame was displayed to
the user to highlight a shelf in view. For visualization of out of view
content, an arrow was used. However, previous work showed that
arrows are not well suited for pointing to out-of-view content [13].

X-ray Visualization in Augmented Reality. A feature of Aug-
mented Reality systems is that hidden and occluded objects can be
readily visualized [11]. In the work by Tsuda et al., five different see-
through-walls visualization techniques were compared in outdoor
scenes [41]. Their results showed that overlaying the wire-frame
models of occluded objects worked best. However, they manipu-
lated the real environment by removing walls that occluded objects.
Another use-case for an x-ray visualization technique is to show
underground infrastructure information with hand-held AR devices
[35] or on images [45]. Both approaches use a semi-transparent
visualization for the ground to make it see-through. Furthermore,
related work discusses how to support the comprehension of spatial
relationships between virtual and real world objects [2, 21]. Their
results show that giving information about occluded objects can be
beneficial for understanding the positions of virtual objects relative
to physical objects. While when interacting with occluded objects,
view stability and point-of-view are most important [22].

2.2 Visualization of Out-of-View Objects
Extending the Field of View. The problem of objects receding

from view is amplified when a head-mounted device (HMD) further
limits the human field of view (FOV) [33]. Here different strategies
have been proposed in previous work. One approach to extend
the limited FOV of HMDS is to compress the information in the
periphery by using a fisheye view [28] or two different lenses with
different magnifications [43]. Another approach is to extend the
FOV using a matrix of LEDs in the user’s periphery [42]. However,
all approaches require additional hardware and do not allow to
encode textual information (e.g., labels to identify the object out of
view).

Off-screen Visualization Techniques. Off-screen visualization tech-
niques can be classified into three main approaches: Contextual
views, Focus+context, and Overview+detail [10, 16]. Contextual
views (e.g., arrows pointing to off-screen space [8]) and Focus+context
(e.g., fisheye-views that convey a distorted view [34]) both overlay
the screen borders with context information, while Overview+detail
shows a miniature map of the surrounding area. A disadvantage of
the miniature map is the cognitive load required to mentally inte-
grate all views [10], while context information along the borders is
more in line with the human frame of reference [20].

In previous research, Contextual views were shown to be best for
the visualization of off-screen objects on small-screen devices [8].
One of the first Contextual views was Halo [5]. It uses circles drawn
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with their centers around the off-screen objects, cutting the border
of the screen slightly. However, a problem of Halo is cluttering,
which is the accumulation of many Halos in corners. In Arrow, the
smaller shape of arrows is used to point towards off-screen objects.
A first study on Arrows in virtual environments showed their po-
tential as a navigation aid [9]. Later, several studies compared Halo
with Arrow approaches [8, 19], revealing that Arrows with fixed
sizes performed worse than Halo, while scaled arrows performed
slightly better. Also, the amount of visible objects has a high impact
on the performance. To avoid cluttering, researchers developed
Wedge [16], which uses less space with isosceles triangles.

Out-of-View Visualization Techniques. In recent work, different
techniques have been suggested to point to objects out of view.
Some of them focus on visually shifting the user’s attention to a sin-
gle object out of view [24] or help the user to inspect the scene from
a specific camera pose [38]. However, they do not support multiple
objects out of view. Therefore, Gruenefeld et al. [13] adapted Arrow,
Halo, and Wedge to head-mounted Augmented Reality to visualize
several out-of-view objects at a time. Their results showed that
all of these techniques are applicable for head-mounted devices,
but their approach was limited to 90 degrees in front of the user.
Therefore, they developed HaloAR and WedgeAR, which make use
of 3D shapes to guide to out-of-view objects [12]. However, the 3D
shapes add visual clutter to the screen and are not well suited for
small field-of-view devices (e.g., Hololens) or the visualization of
many objects at the same time. To visualize multiple out-of-view
objects at the same time without addding too much clutter, a new
visualization technique called EyeSee360 was proposed [14, 15].
EyeSee360 uses a radar-like visualization to display out-of-view
objects and performs better than Halo, Wedge and Arrow [14]. Re-
cently, Bork et al. compared EyeSee360 to five other techniques
(3DArrows [36], AroundPlot [20], 3D Radar, sidebARs [39], and Mir-
rorBall [25]) and found significantly lower completion times and
better usability when using EyeSee360 [7]. Therefore, we choose
EyeSee360 to represent the out-of-view visualization strategy in
our second study.

2.3 Research Gap
Previous work proposed several visualization techniques to guide
users to physical objects in AR. These techniques can be classified
into three different strategies: (1) visualization of objects in view,
(2) visualization of objects out of view, and (3) the combination
of in-view and out-of-view visualizations. However, there are two
remaining issues: (1) in-view visualization techniques mostly focus
on one object at a time (e.g., [6, 37]), or lack support for occluded
objects (e.g., [2, 21]); and (2) the different visualization strategies
have not been compared to each other, leaving their individual
benefits for locating physical objects in AR unexplored. For example,
since out-of-view visualization techniques do not offer any support
when objects appear in view [12], would a combination with an
in-view visualization help users to identify those objects when they
appear on screen?

3 GENERAL APPROACH
The process of locating physical objects can be divided into two
steps: (1) Understanding the head-movement to bring the selected

object in view, and (2) perceiving the location of that object in view
[14]. In related work, we discussed different visualization strategies
that mostly focus on either the first or second step. In contrast,
we hypothesize that a visualization strategy assisting in both steps
works best for locating physical objects. To evaluate our hypothesis,
we first needed to select representative in-view and out-of-view
visualization techniques. Here, we designed four different in-view
visualization techniques that fulfill our requirements and then con-
ducted a user study in which we compare them to identify the
best working technique. As our out-of-view visualization technique
we chose EyeSee360 [14] from related work because it has been
compared to eight other techniques and resulted in fastest search
time and best usability [7]. Afterwards, we compared four differ-
ent visualization strategies: (1) printed map (baseline condition),
(2) in-view visualization, (3) out-of-view visualization, and (4) the
combination of in-view and out-of-view visualizations, in a second
user study, to evaluate which visualization strategy works best for
locating physical objects in Augmented Reality.

4 STUDY I: IN-VIEW VISUALIZATIONS
In our first study, we compared four different techniques for vi-
sualizing objects in view, to select a representative visualization
technique for the second study (see Figure 2).

4.1 Cue Design
We analyzed the two scenarios from the introduction (service tech-
nicians and network engineers) using a hierarchical task analysis
[1] and raised the following requirements:

(R1) The visualization technique should support visualizing
multiple objects at the same time.

(R2) It should visualize objects in interaction range as well as
objects that are more distant.

(R3) The visualization should add as little visual clutter as
possible to the screen.

(R4) Optional: the technique can indicate when an object is
occluded to better support locating it [2, 21].

To compare the different visualization strategies in the second study
separately, it is important that the in-view visualization technique
focuses on in-view objects only and presents no information for
objects that are out of view. To our knowledge, no existing in-view
visualization fulfills our requirements and focuses on in-view visu-
alization only. Therefore, we designed four in-view visualization
techniques inspired by previous work. To avoid visual clutter on
small FOV HMDs, we kept the visualization as simple as possible
(cf. (R3)). This also allows one to visualize multiple objects at the
same time (cf. (R1)). To locate a physical object in the environment,
previous work used either a cue presented at the object’s position
[37] or a cue presented at the user’s screen position pointing in the
direction of that object [14]. For the cue presented at the position
of the physical object, it is important to use a shape of which the
3D attributes can be clearly perceived. Thereby, the cue can be
more easily located in space. Here, we used a 3D representation
of the object for which the user searches, which is located in front
of the object to avoid overlapping (see Figure 2a). For the cue that
points in the direction of the physical object, we do not need to
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Button 1

Pinboard

(a) 3D representation.

Button 1

(b) 2D representation.

Button 2

(c) 3D repres. and occlusion.

Button 2

(d) 2D repres. and occlusion.

Figure 2: In-view visualization techniques for buttons placed on pinboards. Top: user’s view through Hololens captured with
built-in RGB camera and merged with displayed AR content; bottom: illustration explaining relative positions (bird’s eye
view). Best seen in color.

use a shape with 3D attributes because it only points in the direc-
tion of the object. Here, we used a 2D representation of the object,
which always faces the user (see Figure 2b). Since the 2D variant
encodes the direction but not the distance to the physical object,
we used a color gradient from blue to red to encode this distance.
We based this on the cold and warm metaphor used, for example,
in heatmaps1 [17]. Here, red stands for very close and blue for far
away (cp. R2). We decided to use color because size is problematic
when only one object is present (relative size), transparency would
fade out the cue for objects that are far away or close depending on
the chosen encoding, and color is already used to encode distances
in EyeSee360 [14]. Therefore, it might support users when objects
switch between in-view and out-of-view visualizations. Addition-
ally, we created a version of the 2D and 3D representation that
shows a wireframe of the visual cue when the object is occluded
(cp. (R4)) in order to improve spatial perception [2] (see Figure 2c
and Figure 2d). We used a wireframe model to show occlusion as
suggested by related work [41]. For all in-view visualization tech-
niques, we used the color red as default since it is easily perceived
[29]. To avoid occluding the physical objects, all in-view visualiza-
tions are turned off when the user moves into the interaction range
of the object. We implemented the different in-view visualization
techniques using Unity3D2, a 3D game development platform.

Further, we added labels to the in-view visualization technique
(see Figure 2). Thereby, users are able to distinguish the physical
objects they represent. Here, we decided to use text for labeling to
be able to use names for the physical objects. This is supported by
our examples mentioned in the introduction (e.g., the robot arms
are identified and addressed by their identification text). To be able
to read the labels, we dynamically change their alignment to always
be oriented towards the center of the AR display. Thereby the label
is never hidden off screen.

1www.en.wikipedia.org/wiki/Heat_map, last retrieved October 10, 2019
2www.unity3d.com, last retrieved October 10, 2019

4.2 Study Design
To explore different visualization techniques for objects in view, we
conducted a within-subjects controlled laboratory study in Aug-
mented Reality with the Microsoft HoloLens. Our study had one
task: locate objects that are in view. Our independent variable was
in-view visualization with four levels (2D vs. 2D+Occlusion vs. 3D
vs. 3D+Occlusion). We used quantitative methods to evaluate user
performance, taking search time, object selection accuracy, and
subjective Likert-items as our dependent variables.

For this study, we asked: (RQ1) Which in-view visualization
(2D vs. 2D+Occlusion vs. 3D vs. 3D+Occlusion) works best to
locate physical objects in view?

H1 We expect the in-view visualization techniques with oc-
clusion information to perform better than the techniques
without.

H2 We expect 3D+Occlusion to work best with regard to search
time and object selection accuracy.

4.3 Apparatus
In order to abstract from concrete scenarios such as industrial
plants or server rooms and to be able to control external factors,
such as sunlight or varying distances, we created a controllable
lab condition. Here, pinboards represent physical entities, which
might occlude the objects for which the user is searching. Physical
buttons attached to the pinboards represent potentially relevant
objects with which the user needs to interact. An advantage of
using pinboards is that physical buttons can be placed very close
to each other, simulating realistic conditions (e.g., buttons placed
on the back and front of a monitor [22]).

The study setup for this study can be seen in Figure 3b. We
decided to use five 3D printed buttons as our representation for
physical objects. The buttons were placed on three pinboards and
their locations were not changed during the study. However, we did
change their labels in each trial to reduce learning effects through-
out the experiment. We decided to place some of the buttons very
close to each other (5cm) to make sure the task was difficult enough
and motivated by real world situations (e.g., a button on the front

www.en.wikipedia.org/wiki/Heat_map
www.unity3d.com


Locating Nearby Physical Objects in Augmented Reality MUM 2019, November 26–29, 2019, Pisa, Italy

(a) Participant.

Button 1
Button 2
Button 3
Button 4
Button 5

Pinboards

(b) Setup.

Figure 3: Apparatus of first study. Best seen in color.

and back of a monitor). The three pinboards were placed in a row
directly after one other as seen in Figure 3b. Thereby, we could en-
sure that all buttons were lining up and were visible in-view when
a participant started a trial. The buttons were developed using a 3D
printed case, a NodeMCU developer board3 with WiFi integrated, a
button, and an LED that lit up when the button was pressed. The
3D printed buttons are battery powered. For the head-mounted
AR device, we decided to use the Microsoft Hololens4 because it
is the most state-of-the-art device. The 3D printed buttons were
connected to the Hololens using WebSockets over Wifi. To deter-
mine the locations of the 3D printed buttons and whether a button
was occluded or not, we used the spatial perception abilities of
the Hololens. We used an empty room with darkened windows
and an artificial light source to control the brightness throughout
the experiment (around 500 lux) to make sure AR content on the
Hololens could be perceived equally well.

4.4 Procedure
At the start of the study, participants received an introduction to
the Hololens. After, we started the experiment. Participants were
standing as shown in Figure 3b, facing the three pinboards. We
tested each of the four visualization techniques in one block. All
blocks were counterbalanced using a balanced Latin square design.
Each block contained ten measured trials and two test trials in
the beginning. In each trial, all five buttons were shown using the
visualization technique of that block and a red search label on the
Hololens indicated which button to search for. Then, participants
had to walk to the button that they thought was the right one and
press it. In all ten measured trials we ensured that every button was
selected two times. After each block, participants were asked to
fill out a Likert-items questionnaire. At the end of the experiment,
participants had to fill out a demographics questionnaire. Each
participant took approximately 30 minutes to finish the experiment.

4.5 Participants
We recruited 12 volunteer participants (5 female), aged between
25 and 54 years (M=35.75, SD=10.38). None suffered from color
vision impairments, 8 had normal vision, and 4 had corrected-to-
normal vision. We asked the participants to rate their experience

3www.en.wikipedia.org/wiki/NodeMCU, last retrieved October 10, 2019
4www.microsoft.com/hololens, last retrieved October 10, 2019

with Augmented Reality on a 5 point likert scale. The participants
stated they have limited experience (Md=2, IQR=1.5).

4.6 Results
Search Time. Themedian search times for the different in-view vi-

sualization techniques are: 2D=8.01s, 2D+Occlusion=8.84s, 3D=7.87s,
and 3D+Occlusion=7.11s. They are compared in Figure 4.

2D 2D+Occlusion 3D 3D+Occlusion
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Figure 4: Boxplots of search times for different in-view ob-
ject visualization techniques (top whisker to box: first quar-
tile, box to bottomwhisker: fourth quartile, box: second and
third quartile separated by median).

A Shapiro-Wilk-Test showed that the search times are not nor-
mally distributed (p<0.001). Thereafter, we ran a Friedman test
that revealed a significant effect of in-view visualization on search
time (χ2(3)=38.65, p<0.001, N=12). A post-hoc test using Wilcoxon
Signed-rank with Bonferroni-Holm correction showed significant
differences between all conditions (see Table 1). For the search time
of the compared in-view visualization techniques, we can conclude
2D+Occlusion > 2D > 3D > 3D+Occlusion.

Table 1: Pairwise comparisons of in-view visualization tech-
niques (r-values report the calculated effect sizes: >0.1 small
effect, >0.3 medium effect, and >0.5 large effect).

Comparison p-value r-value
2D vs. 2D+Occlusion 0.019 0.15

2D vs. 3D 0.026 0.14
2D vs. 3D+Occlusion < 0.001 0.25
2D+Occlusion vs. 3D < 0.001 0.30

2D+Occlusion vs. 3D+Occlusion < 0.001 0.38
3D vs. 3D+Occlusion 0.035 0.14

Object Selection Accuracy. The total number of correctly selected
objects per in-view visualization technique are: 2D (115/120, 95.8%),
2D+Occlusion (100/120, 83.3%), 3D (116/120, 96.7%), and 3D+Occlusion
(119/120, 99.2%). A Shapiro-Wilk-Test showed that the object selec-
tion accuracies are not normally distributed (p<0.001). After that,
we ran a Friedman test that revealed a significant effect of in-view
visualization technique on object selection accuracy (χ2(3)=9.13,
p=0.028, N=12). However, a post-hoc test using Wilcoxon Signed-
rank with Bonferroni-Holm correction showed no significant dif-
ferences between any of the conditions.

www.en.wikipedia.org/wiki/NodeMCU
www.microsoft.com/hololens
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Likert-scale Questionnaire. After each condition, we asked the
participants to answer two questionswith 5-point Likert-scale items.
The results are shown in Figure 5. Participants stated that they could
quickly locate the in-view objects for all techniques: 2D=4 (IQR=1),
2D+Occlusion=4 (IQR=2.25), 3D=5 (IQR=1), and 3D+Occlusion=4
(IQR=0.25). Further, participants stated that they did not get dis-
tracted by the visualization techniques: 2D=2 (IQR=0.5), 2D+ Occlu-
sion=2 (IQR=0.75), 3D=1 (IQR=1), and 3D+Occlusion=1 (IQR=0.25).

2D

2D+Occlusion

3D

3D+Occlusion

−100% −75% −50% −25% 0% 25% 50% 75% 100%

Strongly Disagree Disagree Neutral Agree Strongly Agree

Performance: I could quickly locate the in−view objects.

2D

2D+Occlusion

3D

3D+Occlusion

−100% −75% −50% −25% 0% 25% 50% 75% 100%

Strongly Disagree Disagree Neutral Agree Strongly Agree

Distraction: I got distracted by the visualization.

Figure 5: Results from 5-point Likert-item questionnaires.
Best seen in color.

Additionally, we ask our participants which in-view visualization
technique they prefer. Overall, eight preferred 3D+Occlusion, two
preferred 2D, one preferred 3D, and one preferred 2D+Occlusion.

4.7 Discussion
Occlusion. Interestingly, occlusion information has a negative

effect on our in-view visualization technique 2D. We think this is
due to the fact that the color information was not well perceived by
participants because of the wireframe visualization (see Figure 2d).
Interestingly, for 3D+Occlusionwe could not observe a similar effect
(see Figure 2c). This is probably because the location information
is not encoded with color, but with the 3D position. Therefore, we
cannot accept our hypothesis H1.

Performance. Our results show that 3D+Occlusion has a signifi-
cantly lower search time than the three other in-view visualization
techniques. Further, 3D+Occlusion also has the highest object se-
lection accuracy (99.2%). However, this result is not significant and
therefore, we cannot except our hypothesis H2. From the Likert-
items we saw that both 3D techniques are well rated by the partic-
ipants with regard to performance and distraction. Further, most

participants preferred 3D+Occlusion and the technique scored the
significantly lowest search time. Therefore, we chose 3D+Occlusion
for the second study to represent the in-view visualization strategy.

Physical Objects. When we placed the buttons very close to each
other, we were worried that it might be too hard for users to lo-
cate them. However, the reported object selection accuracy from
three of the in-view visualization techniques was higher than 95%.
Therefore, we decided to keep this design choice for the second
study.

5 STUDY II: VISUALIZATION STRATEGIES
After we identified a representative visualization technique for each
visualization strategy, we can compare the different strategies to
evaluate how to best locate physical objects in head-mounted AR.
In our previous study, we found that 3D+Occlusion works best for
in-view objects, and from our analysis of related work we saw that
EyeSee360 works best for objects out of view. Therefore, we picked
both to represent the in-view and out-of-view visualization strategy
accordingly. Furthermore, we combined both techniques for our
third AR strategy. As baseline condition we use a printed map that
looks similar like to the setup in Figure 6b.

5.1 Study Design
To explore different visualization strategies for locating physical
objects in AR, we conducted a within subjects controlled labora-
tory study with the Microsoft Hololens. Our independent variable
was visualization strategy with four levels (printed map vs. in-view
vs. out-of-view vs. combined). All visualization strategies can be
seen in Figure 1. We used quantitative methods to evaluate user
performance, taking search time, object selection accuracy, NASA
RAW-TLX [18], and subjective Likert-items as our dependent vari-
ables.

For this study, we asked: (RQ2) Which of the four strategies
works best to locate physical objects?

H3 We expect the combination of in-view and out-of-view vi-
sualizations to result in lowest search time.

H4 We expect the worst object selection accuracy for the out-
of-view visualization technique because of missing visual
guidance for objects in view.

5.2 Apparatus
The setup for this study can be seen in Figure 6b. In this study,
we decided to use four pinboards to be able to place a pinboard in
every cardinal direction. Thus, there is one pinboard in front of
the participant, one to the right, one to the left, and one behind.
We placed two 3D printed buttons on each pinboard, and their
locations were not changed during the study. However, we did
change their labels in each trial to reduce learning effects. The
3D printed buttons were the same ones we used in the first study.
Here, we used the Hololens as our AR device again. Our setup was
done in an empty room with darkened windows and an artificial
light source to control the brightness throughout the experiment
(around 500 lux) to make sure AR content on the Hololens could be
perceived equally well. We added the same labels for EyeSee360 as
we did for our in-view visualization techniques (cf. subsection 4.1).
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(a) Participant.

Button 1 Button 2

Button 3

Button 4

Button 8

Button 7

Button 6 Button 5

Pinboards

(b) Setup.

Figure 6: Apparatus of second study. Best seen in color.

5.3 Procedure
At the start of the study, participants received an introduction to
the Hololens. After, we started with our study. Participants were
standing as shown in Figure 6b, facing the pinboard to the north.
We tested each of the four visualization strategies in one block. All
blocks were counterbalanced using a balanced Latin square design.
Each block contained twelve measured trials and two test trials in
the beginning. In each trial, participants had to press two buttons
after each other, starting from a marked position in the center of all
four pinboards. We randomized this task by randomly starting with
each pinboard three times and then taking one of the other three
pinboards in each of the three times for the second button press.
Thereby, we could ensure that the distances participants had to walk
were the same for all conditions. In each trial, all eight buttons were
shown to the user with the visualization strategy of the current
block. Again, a red search label indicated which button has to be
located and pressed by the user (see Figure 1). After each block,
participants were asked to fill out a Likert-items questionnaire and
a NASA RAW-TLX. After all blocks, we asked participants to fill
out a demographics questionnaire.

5.4 Participants
We recruited 16 volunteer participants (7 female), aged between 24
and 55 years (M=33.63, SD=8.72). None suffered from color vision
impairments, 11 had normal vision, and 5 had corrected-to-normal
vision. We asked the participants to rate their experience with
Augmented Reality on a 5 point likert scale. The participants stated
they have limited experience (Md=2, IQR=1).

5.5 Results
Search Time. Themedian search times for the visualization strate-

gies are compared in Table 2 and Figure 7.

Table 2: Median search times for the visualization strategies.

Condition First button Second button Overall
Printed map 6.49s 6.35s 6.37s
In-view 6.09s 6.13s 6.11s
Out-of-view 6.80s 8.00s 7.50s
Combined 5.48s 5.69s 5.58s
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Figure 7: Boxplots of search times for different visualization
strategies (see explanation of boxplots in Figure 4).

A Shapiro-Wilk-Test showed that the search times are not nor-
mally distributed (p<0.001). Therefore, we ran a Friedman test that
revealed a significant effect of visualization strategy on search time
(χ2(3)=107.08, p<0.001, N=16). A post-hoc test using Wilcoxon
Signed-rank with Bonferroni-Holm correction showed significant
differences between all conditions (see Table 3). For search time, we
can conclude Out-of-View > Printed map > In-View > Combined.

Table 3: Pairwise comparisons of search times with signifi-
cant results (r-values explained in Table 1).

Comparison p-value r-value
Printed map vs. in-view 0.003 0.11

Printed map vs. out-of-view 0.020 0.08
Printed map vs. combined < 0.001 0.28
In-view vs. out-of-view < 0.001 0.25
In-view vs. combined < 0.001 0.21

Out-of-view vs. combined < 0.001 0.41

Furthermore, we did a post-hoc test using Wilcoxon Signed-rank
with Bonferroni-Holm correction to compare the search time for
the first button with the search time for the second button within
each condition. Here, we found significant effects for out-of-view
(p<0.001, r=0.16) and combined (p=0.03, r=0.08). Here, both for
out-of-view and combined, participants were significantly slower
in finding the second button vs. the first button.

Object Selection Accuracy. The total numbers of correctly se-
lected objects over all button presses are: printed map (344/384,
89.6%), out-of-view (357/384, 93.0%), in-view (381/384, 99.2%), and
combined (383/384, 99.7%). A Shapiro-Wilk-Test showed that the
object selection accuracies are not normally distributed (p<0.001).
After that, we ran a Friedman test that revealed a significant effect
of visualization strategy on object selection accuracy (χ2(3)=29.93,
p<0.001, N=16). A post-hoc test using Wilcoxon Signed-rank with
Bonferroni-Holm correction showed significant differences between
some of the conditions (see Table 4). For object selection accuracy,
we can conclude that in-view and combined, both have a significant
higher object selection accuracy than printed map or out-of-view.
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Table 4: Significant results from pairwise comparisons of ob-
ject selection accuracy (r-values explained in Table 1).

Comparison p-value r-value
Printed map vs. in-view <0.001 0.43
Printed map vs. combined <0.001 0.43
Out-of-view vs. in-view 0.004 0.35
Out-of-view vs. combined 0.001 0.40

NASA RAW-TLX. For NASA Raw-TLX [18] scores, printed map
scored 33.09 (SD=10.22), in-view scored 20.14 (SD=12.99), out-of-
view scored 35.62 (SD=17.56) and, combined scored 23.12 (SD=10.00).
In-view and combined both indicate a low workload, while printed
map and out-of-view have higher workloads. A Shapiro-Wilk-Test
showed that the NASA Raw-TLX values are not normally dis-
tributed (p=0.009). Therefore, we ran a Friedman test that revealed a
significant effect of visualization strategy onworkload (χ2(3)=19.19,
p<0.001, N=16). A post-hoc test using Wilcoxon Signed-rank with
Bonferroni-Holm correction showed significant differences between
some of the conditions (see Table 5). For workload, we can conclude
that printed map and out-of-view had both a significantly higher
workload than in-view or combined.

Table 5: Significant results from pairwise comparisons of
workloads (r-values explained in Table 1).

Comparison p-value r-value
Printed map vs. in-view 0.007 0.46
Printed map vs. combined 0.022 0.40
Out-of-view vs. in-view 0.003 0.49
Out-of-view vs. combined < 0.001 0.59

Likert-scale Questionnaire. After each condition, we asked the
participants to answer two questions with 5-point Likert-scale
items. The results are shown in Figure 8. Participants stated that
they could quickly locate the physical objects for the printed map
(Md=4, IQR=1.25), in-view (Md=4, IQR=1), and combined visualiza-
tion strategy (Md=4, IQR=1.25). While they were neutral about the
out-of-view visualization strategy (Md=3, IQR=2). Further, partici-
pants stated that they did not get distracted by the in-view (Md=1,
IQR=1) and the printed map visualization strategy (Md=2, IQR=2).
While they were neutral about the out-of-view (Md=3, IQR=1) and
combined visualization strategy (Md=3, IQR=2).

Additionally, we ask our participants which visualization strat-
egy they prefer. Overall, 8 participants like the in-view visualization
the most, 4 participants preferred the combined visualization, 3
participants liked the out-of-view visualization the most, and one
participant liked the printed map visualization the most.

5.6 Discussion
Search Time Performance. We expected the combination of in-

view and out-of-view visualizations to result in the lowest search
time. At 5.58s, the combined visualization is significantly faster
than the other conditions. Therefore, we can accept our hypothesis
H3. The worst performance we measured was for the out-of-view

Combined

In−view

Out−of−view

Printed map

−100% −75% −50% −25% 0% 25% 50% 75% 100%

Strongly Disagree Disagree Neutral Agree Strongly Agree

Performance: I could quickly locate the physical objects.

Combined

In−view

Out−of−view

Printed map

−100% −75% −50% −25% 0% 25% 50% 75% 100%

Strongly Disagree Disagree Neutral Agree Strongly Agree

Distraction: I got distracted by the visualization strategy.

Figure 8: Results from 5-point Likert-item questionnaires.
Best seen in color.

visualization technique. Here, participants could easily rotate to-
wards the out-of-view object they were seeking, but as soon as it
was in-view and the visual cue was no longer given, participants
struggled with choosing which button to press. Findings in related
work support this [12]. However, we think that participants would
have performed better with the out-of-view visualization strategy
if the buttons had been farther from each other. In our setup, some
buttons were placed only five centimeters (pinboard thickness)
away from each other (front and back of pinboard).

Object Selection Accuracy. Here, again the combination of in-
view and out-of-view visualizations performed best. However, the
visualization in view especially helped participants to select the
right button. We expected the out-of-view visualization to perform
worst, but participants actually made more errors with the printed
map. Therefore, we cannot accept our hypothesisH4. We think that
the high error rates in both studies are again due to our challenging
setup. This led to difficulties with the out-of-view visualization
technique, such as when both buttons almost simultaneously ap-
peared in view and therefore, were hard to distinguish from each
other.

PrintedMap. Weobserved participants rotating themap tomatch
their orientation. This was especially true for the second button
because for the first button the map was handed to the participants
in the right rotation. In many cases, participants went back to the
starting position for the second button and rotated towards north
again. Others tried to do the rotation as a mental step, but then
made errors.
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Visual Clutter. Although the combination of in-view and out-
of-view visualization techniques works best from our quantitative
results, participants stated that they got distracted by the technique
similar to the out-of-view visualization technique alone because of
too much visual clutter (see Figure 8). This is supported by previous
findings [32]. Here, we suggest an adaptive strategy to reduce visual
clutter. We think that by collecting contextual information (e.g.,
eye-tracking data), we can determine whether the user is interested
in locating a physical object in view or out of view. Thereby, only
the required visualization stays active. Further, it may be possible to
encode less information in the out-of-view visualization technique.
EyeSee360 encodes the precise location of an out-of-view object,
although the general direction in which a user needs to turn his
head might be sufficient. For the in-view visualization strategy,
however, users think that the technique is not distracting at all,
highlighting the usefulness of the technique to visualize in-view
objects (see Figure 8).

Limitations. In our study setup for both studies, participants
remembered the positions of the 3D printed buttons because we
placed them on static pinboards. We argue that in several scenarios
this is the case (e.g., for the network engineer where the server racks
are placed at fixed positions in the room). However, for scenarios in
which all possible positions are known to the user beforehand and
only a small number of positions exists, an in-view visualization
strategy may have an unfair advantage over an out-of-view visual-
ization strategy. We think this is reflected by our results that show
fast search times and subjectively favor the in-view visualization
strategy. Therefore, future studies are required to investigate chang-
ing positions and a larger number of physical objects. Here, we
decided to only use eight objects in our second study because with
more objects the small field of view of the Hololens would have
been overloaded with information for the out-of-view and com-
bined visualization strategy. A newer generation of AR headsets
with a wider field of view and an improved out-of-view visualiza-
tion technique may allow to test a larger number of objects in the
future. Further, in our study, we focused on objects that are located
nearby. However, in many scenarios (e.g., manufacturing plants)
objects are more spatially distributed, requiring the user to walk
longer distances. This may negatively impact users performance
because the chance to "get lost" in the environment is higher. Future
work should address this and test larger environments.

6 CONCLUSION
In this paper, we first compared different visualization techniques
for objects in view. Our results show that a 3D representation in-
cluding occlusion information works best when physical objects
appear on the AR device screen. After that, we compared three dif-
ferent Augmented Reality visualization strategies against a printed
map. Our results show that in-view visualization helps to improve
object selection accuracy, while out-of-view visualization improves
search time performance when used in combination with in-view
visualization. However, when designing for small field-of-view AR
devices, visual clutter has to especially be taken into account to
avoid distracting users from their surroundings. Here, the field of
view of the AR headset limits the number of objects that can be
visualized at the same time. Interestingly, participants made the

most errors with the printed map, indicating how useful AR is
for locating physical objects. In the future, we want to investigate
adaptive strategies that detect the required visualization strategy
based on contextual information in order to reduce visual clutter.
Further, we want to evaluate the performance of the different vi-
sualization techniques for a larger number of physical objects that
are distributed in a wider area.
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