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(a) Motion [120] (b) Atention [67] (c) State [117] (d) Instruction [128] 

Figure 1: (a) Robot motion intent: The robot communicates its intended motion (e.g., a trajectory of the robot’s intended 
movement path is visualized in Augmented Reality [120]). Furthermore, our analysis revealed three additional types of intent 
that complement robot motion intents. (b) Atention: A robot aims to catch the user’s attention for subsequent movement 
activity (e.g., by moving its whole body [67]). (c) State: A robot communicates its state so that a human can predict future 
motions and identify potential conficts before they occur (e.g., the robot communicates its movement activity with the help of 
a colored LED stripe [117]). (d) Instruction: The robot aims to provide specifc instructions so that the human can assist further 
movement (e.g., by requesting to open a door [128]). 

ABSTRACT 
Robots are becoming increasingly omnipresent in our daily lives, 
supporting us and carrying out autonomous tasks. In Human-Robot 
Interaction, human actors beneft from understanding the robot’s 
motion intent to avoid task failures and foster collaboration. Finding 
efective ways to communicate this intent to users has recently re-
ceived increased research interest. However, no common language 
has been established to systematize robot motion intent. This work 
presents a scoping review aimed at unifying existing knowledge. 
Based on our analysis, we present an intent communication model 
that depicts the relationship between robot and human through 
diferent intent dimensions (intent type, intent information, intent

location). We discuss these diferent intent dimensions and their
interrelationships with diferent kinds of robots and human roles. 
Throughout our analysis, we classify the existing research literature 
along our intent communication model, allowing us to identify key 
patterns and possible directions for future research. 
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1 INTRODUCTION 
The feld of Human-Computer Interaction (HCI) has moved beyond 
traditional user interfaces and interaction technologies. The om-
nipresence of Artifcial Intelligence (AI) research and development 
requires our feld to scrutinize the applicability of established design 
practices [2, 106]. Human interaction with AI is evolving away from 
being like operating a tool to being more like interacting with a 
partner, which is particularly interesting concerning Human-Robot 
Interaction (HRI) [53]. The area of HRI has been studied for a long 
time in HCI and, in particular, the CHI community [4, 65, 75, 90, 122]. 
For example, Arevalo Arboleda et al. [4] and Villanueva et al. [122] 
investigated combining robots and Augmented Reality (AR) tech-
nology to enable intuitive teleoperation, while others have explored 
on-site control of robot swarms [65] and home robots [75] as well 
as communication of emotions and intentions to the human [90]. 

Robots are versatile, they can assist us in our workplaces, support 
us at home, and accompany us in public spaces [1, 9, 76]. The 
applications of robots are manifold, signifcantly increasing human 
capabilities and efciency [46]. While robots come in many forms, 
robotic arms in particular have been shown to be suitable for and 
adaptable to diferent use cases, such as production lines [15] and 
domestic care [96]. Here, they are known as cobots who support 
their users in Activities of Daily Living (ADLs), such as eating and 
drinking, grooming, or activities associated with leisure time. 

As robots have a physical form, they tend to move and operate 
in the same space as humans. With advances in the degree of auton-
omy allowing for efective close-contact interaction, there is a need 
for a shared understanding between humans and robots. While 
robotic research tackles this from a sensory and path planning 
perspective (e.g., human-aware navigation [69]), the feld of HCI 
(and HRI in particular) has been concerned with how humans may 
better understand robot behavior [12, 99, 124]. The subtleties of 
human communication are usually lost in this context, and robotic 
behavior needs to be understood from its own frame of reference. 
Robots are not a monolithic entity; with the many diferent types 
come just as many unique ways of conveying information, which 
could lead to erroneous interpretations by their human counterpart. 
An added complication is the increasing number of close-contact 
situations that allow little time to recognize and correct errors. 
This has led to numerous research eforts in recent years to fnd 
ways for robots to efectively communicate their intentions to their 
users [68]. This includes the direct communication of planned move-
ments in space [54], but also less obvious means, such as drawing 
a user’s attention to the robot [67], communicating the robot’s 
movement activity state (e.g., active or inactive due to failure) [110], 
and facilitating human oversight by communicating their external 
perception of the world [57]. 

While all of these examples are concerned with communicating 
robot motion intent, they difer tremendously in their methods and 
goals. Other researchers, such as Suzuki et al., have subsequently 
identifed robot motion intent as an essential research area [113]. 
But beyond further solution approaches, the feld needs a common 
understanding of the concept of robot motion intent (i.e., what do 
we actually mean by intent, what are relevant intent dimensions, 
and how does the communication of robot motion intent infuence 
the relationship between robot and human). 

To this end, we conducted a scoping review of current approaches 
to communicate robot motion intent in the literature. Based on our 
fndings, we introduce an intent communication model of motion 
intent, which depicts the relationship between robot and human 
through the means of diferent intent dimensions (intent type, intent 
information, and intent location; see Figure 1). We further discuss 
these diferent intent dimensions and their interrelationships with 
diferent kinds of robots and human roles. Throughout our anal-
ysis, we classify the existing research literature along our intent 
communication model to form a design space for communicating 
robot motion intent. Practitioners and researchers alike may further 
beneft from this work for the design and selection of specifc mech-
anisms to communicate motion intent. We identify future research 
directions and current gaps, which are further highlighted in an 
interactive website that lists the papers and allows comparisons 
based on user-selected categories.1 

Our contribution is two-fold: 1) a survey contribution that in-
cludes our analysis and classifcation of previous literature as well as 
future research (cf. contribution from Wobbrock and Kientz [129]), 
and 2) a theoretical contribution that introduces an intent commu-
nication model and describes the relationship of its entities. 

2 BACKGROUND 
In this section, we will illustrate the need for communicating robot 
motion intent and discuss the current understanding of the term, 
which provides the foundation for our scoping review. 

Robot is an umbrella term that describes a miscellaneous collec-
tion of (semi-)automated devices with various capabilities, tech-
nologies, and appearances[52]. These cyber-physical systems are 
often diferentiated by their Degrees-of-Freedom (DoF) or ability 
to move and manipulate their environment. In industrial assembly 
lines, robotic arms manipulate and weld heavy parts [126], often in 
restricted areas [59]. Enabled by lightweight materials and safety 
sensors, robots have started to adapt to their users – today, they 
shut down when humans get too close or when resistance to the 
robot’s movement is detected. This has led to the development of 
cell-less HRI [10], which has also paved the way for further sce-
narios, such as supporting people with disabilities in their daily 
lives [97]. Ajoudani et al. trace in their review paper several ap-
proaches of HRI, how it evolved, and how it increased over the last 
two decades [1]. They conclude that the success of HRI comes from 
combining human cognitive skills (i.e., intelligence, fexibility, and 
ability to act in case of unexpected events) with the robot’s high 
precision and ability to perform repetitive tasks. 

Matheson et al. proposed diferent types of such cell-less HRI, de-
fned by their closeness of interaction [78]. They include coexistence 
(separation in space but not in time), synchronized (no separation 
in space but in time), cooperation (no separation in space or in time, 
but still not working on the same task), and collaboration (human 
and robot work on a task together, where the action of one has 
immediate consequences for the other). These works indicate that 
communication and interaction between robots and humans are 
critical to successful HRI. While research in human-aware naviga-
tion aims to make the robot smart enough to understand human 

1Interactive Data Visualization of the Paper Corpus. https://rmi.robot-research.de, last 
retrieved February 16, 2023. 

https://rmi.robot-research.de
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behavior and react to it [69], supporting humans in understanding 
robot behavior is equally important [68]. As the work by Math-
eson et al. highlights, humans and robots increasingly share the 
same physical space in HRI, which makes communicating robot 
motion intent a particularly relevant aspect for safe and efective 
collaboration and a prerequisite for explainable robotics [78]. 

However, robot motion intent is a rather vague term and lacks a 
clear defnition. Further, it is not consistently used by researchers 
in the feld. Instead, similar underlying concepts have been investi-
gated under terms such as situational awareness [74], forthcoming 
operation [80], or robot signaling system [117]. Suzuki et al., as 
part of their extensive literature review covering the relationship 
between AR and robotics, emphasize the potential of AR-based 
visualizations for communicating movement trajectories or the in-
ternal state of the robot [113]. However, as their literature review 
extends beyond intent communication, they do not further discuss 
or defne diferent types of intent, nor do they provide a deeper 
understanding of intent properties. 

Our work presents a systematic overview of the feld and ad-
dresses the current issues by conducting a scoping review. Such a 
review or survey contribution helps to organize the published re-
search of the feld and enables refection on previous fndings after 
the feld has reached a level of maturity [129]. The goal of our review 
is to provide a clear understanding and defnition of robot motion 
intent, its properties, and its relationships within HRI. Furthermore, 
our work provides a frst discussion to relate our HRI fndings to the 
growing domain of Automated Vehicles (AVs), so-called external 
Human-machine interfaces (eHMIs), which have identifed similar 
research and design challenges [11, 28, 32, 33, 100]. 

3 METHOD 
Scoping reviews provide an overview of the extent, range, and na-
ture of evolving research areas. They help to summarize research 
fndings and identify research opportunities [5, 123]. Our approach 
is in line with previous work by Ghafurian et al. [48], Muñoz et 
al. [85], and Wallkötter et al. [125]. We applied Preferred Reporting 
Items for Systematic Reviews (PRISMA) [94] guidelines, focusing on 
the Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) [119]. 

For an overview of each step in our paper selection process, 
please refer to Figure 2. We will discuss specifc details of the in-
dividual steps in the following subsections. (1) Based on an initial 
screening of relevant literature, potential search terms were identi-
fed to perform a systematic query using three primary databases in 
the feld of HRI (ACM Digital Library, IEEE Xplore, and ScienceDi-
rect; see Section 3.1). (2) A fltering step was applied based on an 
algorithmic analysis of the total corpus to identify the most relevant 
terms related to the topic (see Section 3.2). (3) The resulting set 
of 822 papers was manually screened in a two-step process, and 
eventually, additional sources were found through a cross-check of 
the references in selected papers (see Section 3.3). The fnal corpus 
consists of 77 papers. 

3.1 Initial Query 
We explored a variety of query terms and their combinations be-
cause, as discussed, the feld currently lacks a coherent and estab-
lished terminology. In addition, we found several terms to be used 

in ambiguous ways, in particular terms such as communication and 
motion. Therefore, we decided on a broad search in this frst step to 
increase recall and reduce the risk of overlooking relevant literature. 
We aimed to encompass a variety of diferent robot technologies 
while still focusing on the concept of intent, even though the word 
may be used in a variety of circumstances. We searched the titles, 
abstracts, and keywords of the databases’ full-text collections with 
the following combined terms2: 

(robot* OR cobot* OR drone*) AND (intent* OR intend*) (1) 

3.2 Algorithmic Filtering 
Due to our initial search being quite broad, further fltering was 
required to identify relevant papers. The initial set allowed us to 
apply an algorithmic approach similar to that of previous research 
done by O’Mara-Eves et al. [92]. Specifcally, we applied the Term 
Frequency-Inverse Document Frequency (TF-IDF) [102] method to 
identify frequently used terminology within our corpus. TF-IDF 
has been shown to be suitable for information retrieval in literature 
reviews [73, 112]. First, we preprocessed the entries by a) combining 
each paper’s title, keywords, and abstract into one feld, b) fxing 
encoding issues such as & (and), ° (degree), and — (emdash), and c) 
converting the strings to lowercase as well as removing punctua-
tion, numbers, symbols, and standard English stop-words from the 
corpus and replacing tokens with their lemmatizations [77]. For the 
creation of the TF-IDF-weighted document-term matrix, we calcu-
lated the Term Frequency (TF) for each term of our corpus, taking 
the static Inverse Document Frequency (IDF) into account, and com-
puted the TF-IDF for each term over all documents. The resulting 
TF-IDF-weighted document-term matrix is shown in Table 1. 
From the frst 150 entries of the TF-IDF sorted list of tokens, three 
researchers independently qualifed related terms to communication 
and motion – two terms we had decided to leave out of the initial 
broad query due to word ambiguity. During the following consen-
sus process, we excluded related terms that were too general and 
ambiguous (e.g., “show” is frequently used in “Our results show[...],” 
“present” in “In this work we present[...],” “demonstrate” in “We 
demonstrate in our results[...],” or “perform” in “We performed a 
study[...]”). All identifed terms were then used in the fltering step 
by applying the following logic to the title, keywords, or abstract 
of each paper in our corpus: 

(communicat* OR visual* OR feedback*) 

AND (motion* OR movement* OR interaction*) (2) 

For a paper to be accepted, a term from the cluster “communication” 
and another from “motion” (both OR operation) had to appear in 
the title, keywords, or abstract (AND operation). As a result, 822 
papers remained in our corpus. 

2ScienceDirect does not support the wildcard “*” but uses stemming and lemmatization 
techniques. In order to achieve search results based on wildcards “*,” we modifed the 
combined term to: (robot OR cobot OR drone) AND (intent OR intention OR intend OR 
intended). 
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Figure 2: Flow chart of the corpus selection process with the identifcation of publishers and the initial search query (see Sec-
tion 3.1), the reduction of the set by algorithmic fltering (see Section 3.2), and the manual screening (see Section 3.3), which 
resulted in 77 papers. 

Table 1: Sorted list of terms from the TF-IDF-weighted document-term matrix. The selected terms are highlighted in bold. 

Rank Term TF IDF TF-IDF Rank Term TF IDF TF-IDF 

1 human 6,547 0.92 6,052.89 7 interaction 3,383 1.33 4,515.61 
2 control 6,769 0.87 5,902.24 15 movement 1,920 1.88 3,606.34 
3 system 7,612 0.69 5,218.61 61 communicat 1,059 2.32 2,455.03 
4 motion 3,640 1.42 5,154.59 140 feedback 665 2.74 1,820.08 
5 model 3,978 1.24 4,938.74 143 visual 674 2.67 1,802.90 

3.3 Manual Screening 
The fnal phase of our paper selection process required manual 
screening, following an approach similar to that of Doherty and Do-
herty [34]. The process involved abstract screening, full-text screen-
ing, and reference screening. During the screening of all abstracts, 
we identifed 706 out of 822 papers as not ftting into the scope 
of this review. The full-text analysis of the remaining 116 papers 
reduced the set to 48 papers. In addition, we screened the refer-
ences cited by the set of 116 papers that were assessed for full-text 
screening. We identifed 29 further relevant references, which we 
then included. This led to a fnal set of 77 papers, which were exam-
ined in the following. During the abstract and full-text screening, 
we pre-excluded 36 papers in unftting paper formats still in the 
corpus, such as proceedings front matter, workshop calls, survey 
papers, or semi-duplicates – when two papers essentially presented 
the same contribution, due to one being a work in progress and 
the other a full paper. We also excluded 305 papers that aimed to 
convey the human’s intent (to the robot) but not the robot’s intent 
(e.g., Kurylo and Wilson [70]). Similarly, we removed another 210 
papers where the research did not focus on the intention of robot 

motion (no robot intent). For example, 1:1 teleoperated devices 
(e.g., van Waveren et al. [121]), or work focusing on AVs and eHMIs. 
We excluded another 220 system design papers that focused on 
aspectus such as aesthetics, mathematical models of motion plan-
ning, or defnitions (e.g., Girard et al. [50]). Eventually, we removed 
four papers where no approach or prototype was developed and 
reported (e.g., Thellman and Ziemke [118]). 

4 INTENT COMMUNICATION MODEL 
Through our literature review, we aim to improve understanding 
of the communication of robot motion intent by analyzing previous 
research. To that end, each author analyzed our literature corpus 
(n=77) in a multi-step process. It was discovered that several papers 
presented, combined, or empirically compared multiple intents (on 
average, more than two per paper). Therefore, we frst systemat-
ically extracted all individual intents, resulting in a total of 172 
intents. By screening these intents, we identifed the primary en-
tities (robot, intent, and human) as well as a communication fow 
between these entities that parallels that of the HCI model from 
Schomaker [104]. However, in contrast to the HCI model, we focus 
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Figure 3: Overview of the intent communication model from robot to human. The three entities (i.e., robot, intent, human) and 
their dimensions are derived from our literature corpus. The fow of communication parallels the human-computer interaction 
model from Schomaker [104]. The main dimensions (i.e., kind, type, role) are discussed in Section 4, while a focused analysis of 
intent information and location is presented in Section 5. 

solely on the communication of intent from robot to human, as 
previous research has already covered the inverse [62]. Further-
more, we identifed a top-level entity, goal, which describes the 
motivation to communicate intent, as well as a low-level entity, 
context, which describes the situation in which the intent is com-
municated. Refecting on all entities, we analyzed the intents by 
asking 1) why they were communicated (goal), 2) who communi-
cated them (robot), 3) what they communicated (intent), 4) to whom 
they were communicated (human), and 5) in which circumstances 
they were communicated (context). Dimensions, categories, and 
properties emerged from the data through an open coding process 
of the extracted answers; specifcally, we identifed kind of robot, 
location, type of intent, information of intent, and role of human 
as our dimensions. The resulting intent communication model is 
shown in Figure 3. In the following, we present our fndings for the 
three primary entities (robot, intent, and human), which we defne 
and support by giving examples. We also discuss the context of 
communicating robot motion intent. 

4.1 Human 
In HRI, we can distinguish between diferent scenarios based on 
how involved a human is in the task performed by the robot. For 
the entity human, we utilize these levels of closeness between robot 
and human to defne the diferent roles of human. Moreover, all four 
roles of human are illustrated in Figure 4. 

4.1.1 Definition. The human has a crucial role during HRI, which 
strongly impacts which intents need to be communicated. From the 
analyzed intents of our corpus, we derived four diferent roles of 
human (collaborator, observer, coworker, and bystander). The roles 
are ordered by the degree of human collaboration and involvement 
with the robot, starting with the most involved (see Figure 4). These 
roles are also closely connected to the overarching goal of the HRI. 
Here, we found supporting collaboration, oversight, and coexistence to 
be of primary importance. In the following, we defne the diferent 
roles, discuss their relationships to overarching goals, and support 
them with examples. 

Collaborator. When in the role of a collaborator, a human works 
with a robot on a shared task in the same space and at the same 
time [78]. Thus, communication of robot motion intent in this con-
text is for supporting collaboration. It aims to foster the coordination 
of robot and human actions regarding space and time to allow them 

to work together on a shared task (e.g., a human-robot assembly 
team in a manufacturing scenario [3]). The action of one of the two 
(i.e., robot or human) has immediate consequences for the other. 
For example, consider the scenario of a robot handing an object to 
a human [36, 89]. Here, the human has to precisely anticipate and 
coordinate with the time and place the object will be positioned 
to enable efcient handover. To that end, Dragan et al. propose a 
robotic arm that applies so-called legible motion, allowing the hu-
man to infer the goal of motion quickly and with certainty [36]. The 
role of a collaborator represents the closest degree of HRI, as they 
form a team in which both depend on each other. In our literature 
corpus, a collaborator is described in 18 papers and is the recipient 
of 37 diferent intents. 

Observer. A human functions as an observer when their main 
job is to supervise the task that is being carried out by the robot. 
Although they mostly just watch, an observer must be ready to inter-
vene and take control of the robot. In this context, communication 
of robot motion intent is for the goal of supporting oversight. Here, 
the robot has to provide information to the human to allow efective 
intervention when needed. Fundamentally, supporting oversight 
refers to the ability of a human to judge and evaluate if a robot 
is operating within its intended parameters. For example, in work 
by Hetherington et al., the robot communicates its movement paths 
to an observer, which enables the observer to foresee and prevent 
potential collisions of the robot with obstacles [60]. Others commu-
nicate the inner state of the robot, allowing an observer to anticipate 
potential task failures that may occur due to problems with the 
robot itself, e.g., faulty sensor information [8, 57]. An observer is 
described in 47 papers and is the recipient of 94 intents. 

Coworker. In the coworker role, the human works next to the 
robot but handles their own task. While these tasks may be part of a 
shared overarching efort or entirely disconnected, they take place 
in the same shared workspace (e.g., a robotic arm that picks up one 
out of two objects and leaves the other one for the human [71]). 
In the coworker context, communication of robot motion intent is 
for the purpose of supporting coexistence. Here, the human needs 
to understand the robot’s motion to avoid safety-critical situations 
(e.g., colliding with the robot). In Aubert et al., a robot and human 
pick up objects from a shared bin for their individual tasks [6]. Here, 
communication of robot motion intent can help the human to coordi-
nate their actions and avoid collisions with the robot. Chadalavada 
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Figure 4: Comparison of the four human roles. The goals are further broken down by tasks to illustrate the relationships 
between the three entities (human, robot, and goals). A) The human (collaborator) and robot work on the same task. B) The 
human (observer) observes the robot and task but does not directly contribute. C) The human (coworker) and robot work on 
diferent tasks that contribute to the same goal. D) The human (bystander) and robot work on diferent tasks that contribute to 
diferent goals. 

et al. showed that communication of motion intent through Spatial 
Augmented Reality (SAR) can improve perceived safety with mobile 
robots [20]. In their study, it meant that participants could choose 
safer walking paths and get closer to the robot without subsequent 
safety shutdowns. In our literature corpus, a coworker is described 
in six papers and is the recipient of 18 intents. 

Bystander. The human is a bystander when they do not share the 
same task or the same task goal with the robot but still occupy an 
area overlapping the robot’s physical workspace. Like the coworker 
role, the bystander role involves communication of robot motion in-
tent to support the goal of supporting coexistence. A bystander needs 
motion information to avoid collision and feel safe. For example, 
imagine a human and a robot encountering each other in a corridor. 
To allow the human to choose a walking path that avoids colli-
sion, the robot can move to one side and communicate its intended 
movement path in advance [83, 127]. A bystander is described in 
17 papers and is the recipient of 23 intents. 

4.2 Intent 
We identifed four diferent types of intent that the robot can com-
municate to the human to express its intentions, contributing to 
increased transparency. We consider these types to be the main 
dimension for classifying intent in the following text. In addition, 
we identifed the dimensions location and information, as shown 
in Figure 3, which help to further classify and describe intent. Given 
their great importance, they are discussed separately in Section 5. 

4.2.1 Definition. As our literature review focused on communicat-
ing robot motion intent, a majority of the corpus (69% of all papers; 
54% of all unique intents) deals with motion intent. Nevertheless, we 
identifed additional intent types that are related to motion intent 
and of equal importance (i.e., attention, state, and instruction). All 
types of intent are described below and the relationship of each to 
motion is explained. Furthermore, we found that for each type of 
intent, we can further distinguish between an intent that is related 
to the robot and one that is related to the world (more details can 
be found in the individual paragraphs below). An overview of all 
types of intent and associated papers can be found in Table 2. 

Motion. These intents are the main type of intent. Motion intent 
is concerned with explicitly communicating future motions (i.e., 

actions that the robot will perform). As our survey is focused on 
robot motion intent, it encompasses more than 50% of the identifed 
unique intents in our corpus. Most of the described intents deal 
with robot self-actions, aiming to indicate future robot movement. 
Thereby, users may be able to improve the coordination of their 
actions in concert with the robot’s behavior to avoid collisions and 
improve safety. For example, Chadalavada et al. employed SAR to 
communicate future movement direction as well as the specifc 
path the robot will take, which helped bystanders feel safe around 
a robotic forklift [20]. World actions are activities that manipulate 
the world around the robot. Again, this may help the bystander 
to coordinate their activities, but it also helps the observer to un-
derstand when to take over control from the robot. Psarakis et al. 
applied this concept of world actions in a VR simulation to visually 
augment the nearby objects that the robot planned to grasp [98]. 

Attention. Intents that communicate the need for attention are a 
supportive element. They precede a motion intent to shift human 
attention toward the robot or process, especially when the humans’ 
attention is not guaranteed (e.g., because they focus on their own 
tasks). For example, Bolano et al. used acoustic feedback to alert 
the human and shift their attention toward the robot whenever it 
detected a possible collision [14]. An example of robot-focused at-
tention was presented by Furuhashi et al., who designed an assistive 
robot based on the commercial Roomba device as a hearing dog that 
can notify deaf users of important events [45]. Here, the system 
uses physical touch to gain the human’s attention by gently bump-
ing into their body. As an example of world-focused attention, Mutlu 
et al. had a humanoid robot quickly look at an object of interest. 
They studied whether collaborators were able to understand the 
robot’s gaze cues and correctly identify the object (among several 
others) that the robot had chosen as its object of interest [88]). 

State. A robot communicating its state allows a human to deduce 
potential future motions and identify conficts before they occur. For 
example, a robot could collide with nearby objects due to errors in 
its sensor system. However, robot communication of the detected 
objects enables a human to take over control and mitigate the 
issue. For state intents, we distinguish between robot self-perception, 
meaning the state the robot communicates about itself (e.g., simple 
text feedback presented on a display that indicates states such as 
“stop” or “moving” [80]), and robot world perception, meaning the 
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Table 2: Overview of diferent intent types, sorted by their categories and subcategories, with their counts (and percentages) of 
identifed relevant papers (max. 77) and unique intents (max. 172). Note: Papers may include multiple unique intents and can 
therefore appear in multiple categories and subcategories. 

Category Subcategory Number of 
Papers (%) Intents (%) 

References 

Motion 
Robot Self-Actions 

World Actions 

38 (49.35%) 

15 (19.48%) 

75 (43.60%) 

18 (10.47%) 

[3, 12–14, 16, 17, 20, 21, 23, 27, 30, 31, 35– 
37, 42, 44, 49, 54, 55, 58, 60, 63, 72, 79–83, 
99, 101, 115, 120, 124, 127, 128, 130, 132] 
[3, 6, 21, 25, 40, 41, 57, 61, 64, 66, 71, 84, 
89, 95, 98] 

Attention 
Robot-Focused Attention 
World-Focused Attention 

6 (7.79%) 
4 (5.19%) 

8 (4.65%) 
5 (2.91%) 

[6, 14, 19, 24, 45, 67] 
[74, 88, 109, 111] 

State 
Robot Self-Perception 

Robot World Perception 

23 (29.87%) 

8 (10.39%) 

27 (15.70%) 

12 (6.98%) 

[3, 7, 8, 18, 29, 31, 38, 43, 55, 63, 74, 79, 
80, 91, 105, 110, 114, 116, 117, 124, 128, 
131, 132] 
[3, 21, 30, 31, 57, 101, 128, 132] 

Instruction 
Robot-Centered Instructions 
World-Centered Instructions 

10 (12.99%) 
9 (11.69%) 

16 (9.30%) 
11 (6.40%) 

[8, 19, 39, 45, 51, 67, 74, 86, 108, 117] 
[3, 8, 13, 16, 21, 22, 84, 98, 128] 

communication of the perceived state of the world (e.g., visually 
highlighting objects in the environment that the sensor system has 
successfully detected, allowing the user to predict and understand 
subsequent robot movement [57]). 

Instruction. In several papers, we identifed instruction intents 
that accompany robot motion. For example, if a robot is blocked by 
an obstacle, it can instruct a human to remove the obstacle so it can 
continue its motion. Instructions can be robot-centered instructions 
when they stand in relation to the robot itself (e.g., Moon et al. 
applied head gaze cues to communicate instructions to the user to 
complete the handover of an object from the robot’s gripper [84]). 
Or, in contrast, instructions can be world-centered instructions when 
they stand in relation to the world (e.g., a robot instructing a human 
to push a button on a wall to open an elevator so that it can continue 
its movement [128]). 

4.2.2 Relationship to Human. Communicating a robot’s intended 
motion to the human helps to improve the perception and under-
standing of the robot’s behavior. However, humans that are, for 
example, not involved in the robots’ task – perhaps because they 
are focusing on their own tasks (coworker) or are just uninvolved 
in general (bystander) – often need an additional cue to be able 
to read robot motion intent, which makes the intent type attention 
necessary (e.g., by an acoustic prompt [6]). State intents enable a 
human to see not only the next motion but also the internal state 
and planning, enabling them to understand actions ahead of time. 
Such intents also support observers in their task of supervising the 
robot. Finally, collaboration means a constant shifting of who is in 
charge when humans and robots work together on a shared task. 
Therefore, motion, state, attention, and instructions are all necessary 
intents for providing a baseline for collaboration (collaborator). 

4.3 Robot 
In our corpus, we identifed three diferent kinds of robot, which 
together form the robot entity. 

4.3.1 Definition. We identifed three main kinds of robots: robotic 
arm, humanoid, and mobile robot. These, in order, represent a spec-
trum of increasing mobility and fexibility based on the area of 
deployment, starting with stationary robots (still with many DoF) 
and ending with robots that are inherently mobile (which also 
includes mobile arms with many DoF on a platform). Based on dif-
ferent robots, researchers have investigated diferent intents with 
varying frequencies. In the following, we illustrate each kind of 
robot with examples from our literature corpus. 

Robotic Arm. Robotic arms can be described as a chain of axis 
links. They are typically fxed to one place and can have a manipu-
lator [47]. Nowadays, they are the industry standard in production 
lines of factories [15] and work alongside humans in HRI environ-
ments [35]. Robotic arms are described in 13 papers and send 22 
intents. 

Humanoid. Humanoids have two robotic arms with manipula-
tors, a torso, a head, eyes, and, often, basic facial expressions. Due 
to the two robotic arms, humanoids have more DoF than single 
robotic arms. Still, humanoids are often fxed to one place and lack 
mobility. Nonetheless, they are an important part of HRI when 
working with humans in a shared workspace [72, 99]. In rare cases, 
they can move in space, imitating human movement. Here, anthro-
pomorphic features of the robots – such as gaze or certain gestures 
– can decrease the time required to predict the robot’s intent [49]. 
Humanoids are described in 11 papers and send 21 intents. 

Mobile Robot. With the addition of mobility comes increased 
fexibility. Mobile robots can be deployed in the air, on the ground, 
or in water. For this kind of robot, we have actively chosen to defne 
them more broadly to include robots that appear only once in the 
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corpus. For mobile robots (also referred to as drones), we distinguish 
between ground drones without a manipulator that move between 
locations, ground drones with a manipulator that can also manipulate 
the world, fying drones that maneuver through the air, and water 
drones that operate on water or underwater. Communicating motion 
intent helps ground drones without a manipulator to, for example, 
lead or follow a human to a specifc place [51]. It can help ground 
drones with a manipulator to, for example, communicate which 
object they intend to pick up [21]. Flying drones or water drones, 
on the other hand, can communicate their motion intent by fying 
or driving in a pattern [91, 114]. All kinds of drones can appear 
alone [27] or as a swarm of drones [17]. Mobile robots are described 
in 53 papers and send 129 intents. 

4.3.2 Relationship to Intent. As mobile robots move around more 
freely, they frequently encounter human bystanders who cross their 
paths. Consequently, mobile robots often have to frst shift the hu-
man’s attention toward the robot’s display, preparing them for the 
communication of the robot’s intended motion. For example, a pro-
jection in front of the robot can catch the attention of a bystander 
while simultaneously informing about the direction of driving [79]. 
At the same time, mobile robots need to communicate their state and 
planning of actions ahead of time, either the inner state (e.g., what 
is the current mission status [74]) or the perceived world state (e.g., 
which objects are detected [31]). Humanoids and robotic arms, on the 
other hand, are often deployed in collaborative scenarios, teaming 
up with humans. Here, robots need to communicate their intended 
motion to coordinate their actions with a human collaborator (e.g., 
which items the robot intents to pick next from a shared bin [6] or 
when objects are to be handed over to the collaborator [89]). 

4.4 Context 
The context describes the setting of the HRI scenario. While the lo-
cation is an essential part of the context, there is more: for example, 
the social environment [103]. Nonetheless, we consider the location 
helpful to defne HRI scenarios. In our analysis, we found various 
types of locations, including workplace, domestic, and outdoor. In 
workplace settings, the robot is frequently part of an assembly line 
or, more generically, a manufacturing process (e.g., collaborating 
with a human worker [117]). However, workplace locations also 
include industrial settings, ofces, or generic work rooms. In total, 
42 papers took place at a workplace location. In domestic environ-
ments, robots support a task at home (e.g., by picking cups up of 
a kitchen table [36]). Here, we found fve relevant papers. Finally, 
in two papers the robot could move freely outside (e.g., fulflling a 
mission and communicating its status [38]). Apart from these, 28 
papers had no particular location specifed. Instead, the authors 
of these papers investigate more generic scenarios of robot motion 
intent (e.g., by stating that a robot moves between two locations 
but without fne details of these locations [80]). For these scenarios, 
it is unclear which locations are most relevant. 

5 ANALYSIS OF INTENT INFORMATION AND 
LOCATION 

In addition to the diferent types of intent discussed in the previous 
section, two other dimensions of intent emerged from the data: 
Intent information (which refers to the data communicated by the 

robot) and intent location (which describes from where the intent 
is communicated to the human). In this section, we defne these 
dimensions, illustrate their application with examples, and present 
a summary of empirical fndings concerning their usage. 

5.1 Intent Information 
Based on our analysis of how the intent is communicated as well 
as what is communicated, we derived two main properties for 
categorizing intent information: spatial and temporal. 

5.1.1 Spatial Property. The primary approach to convey spatial 
information is to embed it directly into the environment, i.e., have 
it registered in space. We identifed 105 matching intents. We 
can further classify such intents as conveying local information (74 
intents) or directional information (31 intents). Local information 
aims to precisely relate the information to the surrounding space by 
showing an exact position that naturally may contain orientation 
information as well. Han et al., as an example, convey local infor-
mation by using SAR polygon visualizations to frame and highlight 
detected objects on a table, allowing a human observer to supervise 
the robot’s intended movement and manipulation actions [57]. In 
contrast, directional information aims to communicate the explicit 
direction of movement (e.g., an arrow pointing in the direction of 
movement [20] or toward an object or person of interest [61]). 

Information that is unregistered in space, however, employs an 
abstract encoding of the spatial property. In total, we identifed 67 
matching intents. This category includes the following types of in-
tent: Description, symbol, and signal. Description (11 intents) applies 
to scenarios in which textual or verbal information is used (e.g., the 
robot informs the human verbally before initiating a movement to 
perform a touch [25]). Symbol (25 intents) applies to cases in which 
a symbolic representation is used to form the intent communication 
(e.g., a mobile robot that nods its head to request a human follow 
before moving toward its destination [39]). Signal (31 intents) ap-
plies when components are turned on/of to indicate a change (e.g., 
an acoustic prompt is turned on to gain attention for the upcoming 
communication of motion intent [6]). Mini maps provide an abstract 
but geographical encoding that includes the relationships among 
diferent objects in the environment [22, 124, 132]. 

Empirical Implications. While information registered in space 
provides a direct link between real-world objects and the displayed 
information, information unregistered in space lacks this connection 
and requires an additional mental step to create this link. Conse-
quently, information unregistered in space may be less intuitive, and 
thus researchers have explored diferent combinations of informa-
tion to mitigate that. Andersen et al. as well as Wengefeld et al. 
showed that combining multiple types of intent information that 
are unregistered in space (e.g., text description and symbol icons) 
helps to efectively communicate motion intent to the user [3, 128]. 
On the other hand, Staudte and Crocker found that combining both 
categories (registered & unregistered), which in their case involved 
a robot gazing at a specifc object while a verbal description of the 
object played, leads to successful perception and understanding by 
the user [111]. Similarly, Bolano et al. later showed that a verbal 
description of the target can be combined with visual feedback of 
the motion endpoint to achieve the same improvement [14]. 
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5.1.2 Temporal Property. The temporal property of intent informa-
tion is about the distinction between having a discrete or continuous 
information fow. Discrete information has a fxed, distinct ap-
pearance in time and is benefcial for communicating robot motion 
intent because it enables the human to detect a change (i.e., the 
information appears) and it signals at which point the information 
loses its relevance (i.e., it disappears). For example, Aubert et al. 
equip their humanoid robot with a display that shows the number 
of the next bin it will approach, thereby allowing a human to avoid 
confict with the robot [6]. Overall, we identifed 89 intents that 
communicate discrete information. Continuous information, as 
has been provided in 83 intents, is available throughout the whole 
task or over several task phases (i.e., it is visible independent of its 
relevance to the current task). It enables the human to observe the 
robot, compare it with the world, and evaluate the correct task exe-
cution. Tsamis et al., for example, implemented AR visualizations 
for a Head-Mounted Display (HMD) to continuously communi-
cate the intended movement space of a robotic arm by placing a 
semitransparent red sphere around the robotic arm [120]. 

Empirical Implications. Faria et al. showed that both discrete 
and continuous information are efective for communicating a follow 
me intent with spherical robots [39]. Koay et al. also evaluated both 
temporal properties using a robot dog that guides people living with 
hearing loss. However, they found that a motion-based approach 
(continuous), in which the robot’s head movements request users 
to follow, is more successful than using a fashing Light-Emitting 
Diode (LED) stripe (discrete). They attribute this to the fact that head 
movements are more straightforward to interpret [67]. The fndings 
of Aubert et al. suggest that combining discrete and continuous 
information is the most efective method. They showed that the 
combination of a motion-based approach (continuous) and a display 
approach (discrete) to communicate the robot motion end-point 
outperformed both uni-modal intent communication conditions [6]. 

5.1.3 Cross Relations. Inherently, the information of every intent 
has spatial and temporal properties. In the following, we describe 
the relationships between these properties of intent information. 

For unregistered in space, the temporal property is almost evenly 
distributed between discrete and continuous information. Here, sig-
nal is an exception, as discrete (23 intents; e.g., having fashing 
lights attached to a mobile robot to indicate a discrete change of 
movement direction, similar to a car [60]) is used more often than 
continuous (eight intents; e.g., an LED stripe attached to the robot to 
continuously communicate the remaining distance to the target po-
sition through a color-coded progress bar [8]). Signals are primarily 
used to communicate sudden changes. Accordingly, such discrete 
events are naturally communicated as discrete intent information. 

For registered in space, we see an uneven distribution for both 
subcategories. Intent information classifed as local is mostly com-
municated as continuous information (50 intents; e.g., using SAR 
to continuously highlight an area in a workplace where the ro-
bot will be active during its movements and action [3]) instead 
of discrete (24 intents; e.g., using SAR to highlight a button on a 
wall that must be pushed by a human for the robot to continue 
its movement [128]). We think that robot motion likely relates to 
a continuous event because it is meant to happen over time and 
takes place continuously. Intent information classifed as directional 

is mostly communicated as discrete information (23 intents; e.g., a 
display is attached to the top of a mobile robot, communicating the 
intended movement direction with an arrow [80]) and only seldom 
as continuous (8 intents; e.g., a drone is visualized as an eye in AR, 
constantly looking in the direction of movement [124]). The reason 
is that directions are primarily used to communicate an updated 
movement direction to the human; therefore, it makes sense that 
they are most often given as discrete information. 

5.2 Intent Location 
Various technologies can enable the communication of robot motion 
intent. We found that, in particular, the placement of these tech-
nologies (on-robot, on-world, and on-human) can help to classify the 
diferent approaches in the literature, as there is often a relationship 
between the placement and specifc types of technology. 

On-Robot can be further divided into robot-only technology or 
additional robot-attached devices. We identifed 114 intents com-
municated through on-robot technology. As an example for the 
subcategory robot-only, Moon et al. utilize the head orientation of 
the robot, mimicking a gaze cue, to communicate mid-air locations 
for its intended movement as an instruction to the user [84]. Nearly 
half of all categorized intents that utilize on-robot technology fall 
into that subcategory, which is of particular interest because it 
limits the need for additional technology and often involves imita-
tion of human-to-human behavior. The robot-attached subcategory 
requires some additional hardware to be mounted to the robot (e.g., 
SAR, LED, or displays). For example, Wengefeld et al. attach a laser 
projection system to the robot and thereby communicate various 
types of intents, including state, motion, and instruction [128]. 

On-World has received relatively little attention in the literature. 
It includes, for example, small displays attached to the workspace 
at object bins [6], or a desktop display (to visualize motion intent) 
with speakers (to gain attention) next to the robot’s workspace [14]. 
While the inability to change the environment may be less desirable 
from a generalizability perspective, for some technology, it adds 
signifcant benefts. In particular, SAR would be easier to realize 
with a fxed projector position on-world and it would allow for larger 
projection areas. We identifed eight diferent intents on-world. 

On-Human includes head-attached technologies, which primarily 
refers to HMD devices, which allow more complex visualizations. 
Gruenefeld et al., for example, experimented with diferent spatial 
visualizations, such as visualizing the intended movement path, 
previewing future locations of the robot arm, or visualizing the 
activity area as a whole [54]. In addition, some approaches rely on 
hand-held technologies. Correa et al., for example, used a tablet 
device displaying various types of information (map, live view, next 
steps) to support oversight and communicate motion intent [31]. 
We identifed 50 intents on-human. 

Empirical Implications. For the intent location, it is gener-
ally better to output information closer to the target. For exam-
ple, LeMasurier et al. compared several motion-based and light-
based approaches for humanoids to communicate an intended start 
of movement at an assembly workplace. They saw that an LED 
bracelet located closest to the workspace was the most noticeable 
and least confusing [72]. Furthermore, researchers found evidence 
that humans may prioritize on-human technology over on-robot 
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technology. For example, Che et al. were able to show that the use 
of a vibrotactile bracelet worn by the user led to a better expression 
of the robot’s motion intent, reduced users’ efort, and increased 
users’ trust in the robot during a collision-avoidance movement 
when compared to a solely robot-based approach using legible mo-
tion [23]. Finally, combining multiple output technologies can fur-
ther increase performance. For example, Mullen et al. investigated 
a multi-modal approach for communicating robot interference in a 
sorting scenario that combined an AR-HMD visualization and ac-
tive feedback via a vibrotactile bracelet. They found that combining 
both feedback types outperformed the single modality baselines. It 
allowed the human to more efciently teach the robot and decreased 
the required interaction time. [86]. 

5.3 Relation between Location and Information 
In the following, we provide insights into the relationship between 
intent location and intent information (cf. Table 3). 

5.3.1 Registered in Space. To communicate location information 
registered in space, most researchers rely on head-attached tech-
nologies, such as AR-HMDs (on-human). For example, Tsamis et al. 
implemented AR visualizations to communicate an intended move-
ment trajectory of a robotic arm [120]. They placed small spheres 
along a defned path in 3D space from the robot’s end-manipulator 
to a specifc destination. They found that using their system im-
proved task completion and robot idle times, with fewer interrup-
tions to the overall workfow. In addition, users reported increased 
feelings of safety and trust toward the robot. In contrast, Correa 
et al. proposed a tablet visualization that showed a live camera feed 
of the mobile robot highlighting recognized objects in its environ-
ment via a wireframe in the visualization [31]. In addition to intents 
displayed on-human, robots are often used to convey information 
directly through specifc movements or pointing (on-robot). For 
example, Holladay et al. used a robotic arm and its end-efector to 
communicate a directional cue by pointing toward an object placed 
on a table [61]. The resulting pointing confgurations were reported 
to make it easier for novice users to infer the target object. Another 
example for displaying information on-robot is provided by Het-
herington et al. They used SAR to project an arrow in the intended 
movement direction of the mobile robot on the foor [60]. Their 
results show that projected arrows were more socially acceptable 
and more understandable than fashing lights. Finally, information 
registered in space can be outputted on-world. For example, Cleaver 
et al. used their web-based environment [26] to compare four difer-
ent conditions of visualizing the intended movement trajectory of 
a mobile robot on a world-located display [27]. In contrast, Aubert 
et al. placed small displays on three bins and used bin numbers and 
progress bars to indicate from which bin the robot coworker would 
next withdraw an item. However, the display-based approach could 
not signifcantly reduce the number of physical conficts [6]. 

5.3.2 Unregistered in Space. Interestingly, a relatively large num-
ber of symbol information is communicated through the robot 
itself (on-robot). Here, we found many approaches where the ro-
bot performs specifc movement patterns that the human has to 
decode appropriately. A symbolic approach is shown by LeMa-
surier et al. [72]. They slightly move the robot’s manipulator to 

the left and right to communicate an intended movement start. 
This approach received relatively high ratings on several measures; 
however, the authors recommend that the addition of light signals 
near the workspace and the origin of motion (like an LED bracelet) 
may provide a beneft to HRI in shared spaces. Song and Yamada 
provide an example of the type symbol by using diferent static 
and dynamic light patterns on a robot-attached colored LED stripe 
to illustrate diferent states of the robot [108]. Communication of 
signal information is mainly achieved through robot-attached tech-
nology, such as LED or audio speakers. Wearable technologies can 
also show spatially unregistered information (on-human). Che et al. 
propose a vibrotactile bracelet worn by the user to communicate 
an initiated collision-avoidance movement of a mobile robot [23]. 
This approach led to a better expression of the robot’s motion in-
tent, reduced users’ efort, and increased users’ trust in the robot. 
Furthermore, Walker et al. implemented a radar-like mini-map in 
the corner of an AR visualization to illustrate the relative position 
of the user to a drone [124]. Although the radar provides the user 
with the means to rapidly locate the robot relative to their own 
position, some participants mentioned that they did not need to 
use the radar much because they always faced the drone. Finally, 
unregistered information can also be presented on-world. Bolano 
et al. propose verbally describing the updated destination of the 
robot’s end-manipulator via a speaker in addition to the screens 
placed in the shared workspace [14]. They found that users better 
understood the robot’s intended motion, including when the robot 
had to reroute itself to avoid collision. 

5.3.3 Discrete. Discrete information is usually presented directly 
on-robot. As an example of robot-attached technology, Domonkos 
et al. attached a colored LED stripe to the base of a robotic arm 
to communicate the intended direction of movement to a human 
coworker [35]. In contrast, Glas et al. proposed a mobile robot that 
performs head gestures to initiate either a follow-me or lead-me 
request to the human [51], relying on the robot itself as in robot-only. 
Gu et al. evaluated a visual feedback displayed through an AR-HMD 
(on-human), indicating the planned movement direction of the robot 
via an arrow visualization [55]. They found that the visualization 
improved perceived safety and task efciency. Instead of relying 
on the visual modality, Mullen et al. proposed discrete feedback 
through a vibrotactile bracelet that is activated to communicate 
robot interference, triggering the human to move in order to allow 
the robot to continue its movement [86]. Their fndings show that 
vibrational feedback can reduce the time required to notice and 
respond to an intent. Aubert et al. equipped bins (from which items 
could be chosen) in the environment with speakers to emit discrete 
auditory information on world [6]. They recommend not solely 
relying on auditory information, but using it in a multi-modal 
approach, which is further supported by Bolano et al. [14]. 

5.3.4 Continuous. Like discrete information, continuous informa-
tion is primarily displayed on-robot. Matsumaru et al. attached an 
omnidirectional display on-robot, projecting an eyeball-like visual-
ization that efectively communicates the direction of movement to 
a human [81]. In contrast, Dragan et al. propose performing legible 
motions with a robotic arm itself to communicate the next object 
it will grasp [36], which they found enabled fuent collaboration. 
As an example of communicating intents on-human, Walker et al. 
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Table 3: Overview of intents with diferent properties of intent information (by rows) in combination with intent location (by 
columns) – up to three example references are listed for each category. Please note that each intent has a spatial and a temporal 
property. 

Category Subcategory On-Human 
Head-Attached Hand-Held 

On-World On-Robot 
Robot-Only Robot-Attached 

(Spatial) 
Registered 

Local 
Directional 

35 [54, 99, 124] 
3 [55, 101, 124] 

3 [31, 127] 
0 

4 [6, 14, 27] 
0 

22 [12, 16, 36] 
14 [61, 83, 84] 

10 [30, 60, 128] 
14 [20, 60, 80] 

(Spatial) 
Unregistered 

Description 
Symbol 
Signal 

0 
5 [124, 132] 

0 

1 [31] 
0 

3 [23, 24, 86] 

1 [14] 
1 [22] 
2 [6, 14] 

0 
14 [51, 67, 72] 

0 

9 [79, 111, 128] 
5 [3, 7, 108] 

26 [35, 115, 117] 
Total 43 (25.00%) 7 (4.07%) 8 (4.65%) 50 (29.07%) 64 (37.21%) 
(Temporal) 
Discrete 

15 [55, 89, 98] 4 [23, 24, 86] 5 [6, 14] 19 [45, 49, 72] 45 [19, 39, 130] 

(Temporal) 
Continuous 

28 [21, 120, 132] 3 [31, 127] 3 [14, 22, 27] 31 [17, 18, 36] 19 [29, 57, 81] 

display a symbolic representation of a focusing eye lens in an AR-
HMD, encoding the relative distance to the next target [124]. Their 
results show a signifcant improvement in users’ understanding of 
robot motion intent. Watanabe et al. proposed presenting continuous 
visual feedback via a tablet to inform a wheelchair passenger of a 
robot’s intended motion path [127]. Lastly, continuous information 
can be displayed on-world. Chandan et al. proposed a map visual-
ization for a stationary tablet display that continuously shows the 
locations of three mobile robots and other objects of interest [22]. 
They found this approach signifcantly improved the participants’ 
ability to observe and assist the robot. Similarly, albeit only studied 
in a web-based experiment, Cleaver et al. proposed a 3D visualiza-
tion displayed on a 2D screen to continuously communicate the 
intended path of a mobile robot [27]. 

6 DISCUSSION AND FUTURE RESEARCH 
In the following, we discuss key fndings of our literature survey and 
formulate future research directions as takeaway messages for the 
HCI community. The organization of the section follows the three 
entities human, intent, and robot from our intent communication 
model and concludes with a discussion of the overall model. 

Human. From the analyzed intents of our corpus, we derived 
four diferent roles of human (collaborator, observer, coworker, and 
bystander). In our analysis, we found that the human role is strongly 
related to the overarching goals of communicating motion intent – a 
specifc goal can be directly derived given a specifc human role. For 
example, if the HRI scenario involves the human taking the role of 
an observer, the motion intent needs to help with fostering oversight. 
As a result, this indicates that practitioners and researchers should 
explicitly defne the role and, thereby, the involved human stake-
holders before settling on the robot or specifc intents they may 
want to communicate. The human roles we found in a bottom-up 
process through our analysis align well with the previous work of 
Onnasch and Roesler [93]. In contrast to Onnasch and Roesler, the 
role of the operator did not show up in our analysis. We suggest 
this is because robots are not manually operated by humans in our 

corpus, as this would not require the robot to communicate any 
intent [53]. 

Future Research: Our analysis showed that nearly all papers 
a) investigate individual human roles, e.g., they (often implicitly) 
pick one and focus on that, and b) design and study only for a 1:1 
relationship between human and robot. The only exceptions to this 
are Faria et al., Kirchner et al., and Palinko et al., who investigate the 
legibility of robot movement for a group of humans [41] or explore 
the use of gaze cues to allow the robot to choose their human 
collaboration partner from a group of humans [66, 95]. This limited 
involvement of multi-user groups is, of course, to be expected in an 
emerging feld that frst needs to establish certain ground truths. 
Involving multiple persons or even multiple robots and persons 
complicates HRI tremendously, yet we think this is the subsequent 
step research must take. In particular, it would be interesting to 
refect on the suitability of specifc technologies (e.g., SAR will 
likely be better suited to satisfy multi-user scenarios compared to 
HMD technology). 

Intent Types. Through our scoping review of robot motion in-
tent, we observed that communication of motion often requires 
additional intents that serve as pre- or post-cursors to the commu-
nicated motion intent. Furthermore, we found that robot motion can 
also be indirectly communicated: For example, by communicating 
only the robot’s state (e.g., [8]) or by instructing a human to open 
a door so the robot can continue on its path (e.g., [127]). These var-
ious types of intent demonstrate the diferent facets of robot motion 
intent, which represent both actual intended movement trajectories 
and related communication. We see that as a key fnding, distin-
guishing our work from previous research that focuses primarily 
on the communication of motion intent [99, 113, 124]. With our 
survey, we are confdent that other researchers will start to adopt a 
more holistic and precise use of the term robot motion intent and, 
for example, start highlighting the need for related intents, as we 
found in our analysis. 

Future Research: Researchers should investigate how the difer-
ent types of intent may best be combined to achieve specifc intent 
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communication goals. Currently, there is little empirical knowledge 
about, for example, when and to what extent a robot may need to 
frst communicate attention before efectively being able to com-
municate motion intent. Further research should also challenge our 
classifcation of types of intent and potentially extend them. 

Intent Information and Location. We derived two main properties 
that categorize our identifed intent information related to space: 
registered in space (61.05%) and unregistered in space (38.95%). This 
almost-even distribution reveals that a lot of relevant research not 
only focuses on information that aims to convey local or directional 
information (e.g., a resulting trajectory [27]), but also on more 
abstract representations, namely description, symbol, and signal. 
These are often much less complex and indicate that robot motion 
intent can be communicated without visual 3D representations of 
future movement. This shows that there are viable alternatives to 
wearing special on-body technology, resulting in fewer system costs 
and a decreased setup time. An alternative can be the intent location 
on-robot. In previous work, researchers have refned robots with 
anthropomorphic elements – such as eye-like features or certain 
movement gestures – to communicate motion intent. Our literature 
review identifed 15 such instances, specifcally applying eye- or 
head-gaze (e.g., looking at an object to indicate a handover between 
human and robot [84]). While anthropomorphic elements may not 
be as precise as digital representations through technology means 
(e.g., visualizations in AR), they share the same baselines as in 
Human-Human Collaboration (HHC). The general assumption is 
that, in turn, they can be easily understood by users and can mostly 
be integrated into the actual HRI. A possible combination with 
a verbal description provides a multi-modal output to the user, 
resulting in faster recognition of the specifc object [111]. 

Future Research: While previous research has explored combi-
nations of spatially registered and unregistered information [111], 
we are unaware of research that has contrasted their efectiveness. 
Therefore, current design decisions may be based more on the avail-
ability of particular technology and less on the intended outcome. 
Future research should explore this further so that practitioners 
can more accurately judge the potential trade-ofs between sim-
ple or complex information and related technology use. Regarding 
the use of anthropomorphic features, the integration of such com-
munication cues has been explored regarding their legibility and 
efectiveness in communicating robot motion intent. However, their 
implicit consequences (e.g., causing the human to ascribe human-
like behavior to the robot) may still need to be fully explored. The 
means and cues of communication have signifcant consequences 
for the trust relationship between humans and robots [56]. 

Robot. When looking at the three kinds of robots and their usage 
in research, we can see that the physical properties of a robot have 
a large impact on communication means: In particular, the on-robot 
location for intent communication. Some robots come with pre-
installed displays, while others have anthropomorphic features 
built in. Flying drones, on the contrary, require some kind of remote 
communication tool (often in the form of HMDs) to communicate 
over a larger distance. Robots are also an area of much technical 
experimentation, i.e., many researchers are building or customizing 
their own robots. For example, one may add anthropomorphic 
features to a robotic arm. As a result, researchers tend to use these 

built-in or customized features to communicate intent. They may 
often have only a particular kind of robot available; thus, they are 
limited to a certain way of communicating robot motion intent. Of 
course, this limits the generalizability of current fndings, as each 
robot conveys unique features that can impact HRI. 

Future Research: These fndings show that many research 
endeavors explore only certain kinds of robots. A more systematic 
approach is called for to investigate the various kinds of robots and 
their impacts on communicating robot motion intent. We also found 
that more and more research applies simulation environments in 
Virtual Reality (VR) to explore HRI. Nevertheless, we need more 
studies to validate such fndings and provide a broader foundation 
for their generalizability. 

Context. Compared with previous research in AVs [28, 32] and 
eHMIs [33], we can identify several similarities, despite the substan-
tial diferences in the context of use and robot technology. Colley 
et al. found that visualizing internal information processed by an 
Augmented Virtuality (AV) could calibrate trust by enabling the 
perception of the vehicle’s detection capabilities (and its failures) 
while only inducing a low cognitive load [28]. Currano et al. ex-
plored the interaction between complexity of head up displays, 
driving style, and situation awareness [32]. In the area of eHMIs, 
researchers have been able to distinguish between diferent natures 
of message (e.g., danger and safety zones) [33]. These correspond 
to our identifed types of intent, highlighting diferent meanings for 
the user for the provided intent. In the context of AVs, the informa-
tion used to formulate the actual intent is primarily unregistered in 
space. It uses text, symbols, and audio prompts. The intent primar-
ily describes the vehicle’s state (e.g., automated/manual, cruising, 
yielding) or advice/instructions to the pedestrian (e.g., to allow safe 
road crossing). The large diferences between the felds of research 
result primarily from the standardizations in automotive research, 
such as roads, road signs, markings, and restrictions. Nevertheless, 
there are potential overlaps. 

Future Research: The two felds have, from our perspective, 
not yet shared many cross-activities among researchers, which 
could lead, for example, to transferring those motion intent tech-
niques that have shown to be efective in one feld to the other. 
We could imagine that future research could beneft both sides if a 
more holistic perspective is applied. In particular, the research for 
eHMIs in AVs could beneft from more exploratory technological 
approaches in HRI, such as making use of AR-HMDs and applying 
more advanced visualization to communicate motion intent. While 
this may not be relevant for the near future, as such devices are not 
yet consumer-ready, this may change over the coming years. 

The Model. The overall model is an abstract characterization 
of the current literature on robot motion intent. It may be seen as 
a summary of the current understanding of the design space for 
robot intent communication, where it illustrates all components and 
highlights their interconnection. Thereby, future researchers and 
practitioners should beneft from the model by using it as a guidance 
and checklist throughout the design phase of such Human-Robot 
scenarios; i.e., being guided to carefully think and decide upon 
diferent types of intents or whether intent information should be 
encoded spatially or temporally. In addition, the model can help 
to unify the language of robot motion intent and thereby support 
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researchers and practitioners to fnd related work as well as help 
to identify research gaps. 

Future Research: We invite researchers to actively challenge 
the model and thereby helping to develop the feld even further. 
They should scrutinize whether the design space is sufciently clas-
sifed or how it can and needs to be extended to cover future work. 
As our model was derived from the analysis of our literature corpus, 
it is ftted to the gathered research. Nonetheless, one can utilize 
novel research contributions that will be published in the future to 
revisit and evaluate the model (i.e., to investigate if novel contribu-
tions can still be described by our model). Moreover, we imagine 
that a more thorough discussion in the context of eHMIs may ben-
eft the model as well as incorporating other lines of research that 
are concerned with communicating intent, such as Sodhi et al. or 
Müller et al. [87, 107]. 

7 CONCLUSION 
This paper provides two main contributions: 1) a survey contri-
bution that includes an analysis and classifcation of previous lit-
erature as well as future research directions, and 2) a theoretical 
contribution that introduces an intent communication model and 
describes the relationships of its entities, dimensions, and underly-
ing properties. In particular, our work highlights that robot motion 
intent requires a broader perspective on robot intent and that it 
includes intent types that may seem, at frst glance, unrelated to 
motion. However, in our analysis, we found that attention, state, and 
instruction are important and often necessary pre- or post-cursors 
to communicate explicit motion intent. We also found that only 
a few papers explicitly discuss or present the type of intent they 
aim to communicate and they also lack clear descriptions of intent 
information or location. Our work aims to help researchers in the 
future to better align their work with the suggested dimensions, 
making it easier to assess and compare diferent studies. Therefore, 
we aim to provide a foundation for a unifed language regarding 
robot intent, even beyond motion. From a practical perspective, the 
classifcation of the existing research literature along our intent 
communication model helps researchers and practitioners alike to 
understand the design space for communicating robot motion intent. 
As it is an emerging feld, much work has focused on fnding novel 
approaches and solutions to communicate robot motion intent in 
one way or another. We have identifed multiple areas of need for 
future research directions. However, we would like to emphasize 
once more that, above all, the feld needs more systematic analysis 
and comparison of diferent approaches to improve understanding 
of the infuences of diferent intent dimensions and properties. We 
believe that the presented intent communication model provides an 
empirically deducted foundation to inspire and guide such work. 
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