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ABSTRACT
In Level 3 automated vehicles, preparing drivers for take-over re-
quests (TORs) on the head-up display (HUD) requires their repeated
attention. Visually salient HUD elements can distract attention from
potentially critical parts in a driving scene during a TOR. Further,
attention is (a) meanwhile needed for non-driving-related activities
and can (b) be over-requested. In this paper, we conduct a driv-
ing simulator study (N=12), varying required attention by HUD
warning presence (absent vs. constant vs. TOR-only) across gaze-
adaptivity (with vs. without) to fit warnings to the situation. We
found that (1) drivers value visual support during TORs, (2) gaze-
adaptive scene complexity reduction works but creates a benefit-
neutralizing distraction for some, and (3) drivers perceive constant
HUD warnings as annoying and distracting over time. Our findings
highlight the need for (a) HUD adaptation based on user activities
and potential TORs and (b) sparse use of warning cues in future
HUD designs.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in ubiquitous
and mobile computing; User studies; Mixed / augmented reality.
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1 INTRODUCTION
Errors in human perception can cause hazardous situations. This is
especially true for safety-critical tasks that heavily rely on visual
perception, such as driving. For example, in 2019, 47% of all traffic
accidents in Great Britain occurred because the drivers failed to
look properly, and in 8% of the cases, drivers overlooked pedestri-
ans [52]. Globally, more than half of all lethal traffic accidents are
among vulnerable road users (e.g., pedestrians, cyclists, etc.) [56].
Consequently, it is necessary to design driving assistance systems
that protect vulnerable road users by reducing errors in the driver’s
visual perception.

One approach to overcome this problem is using head-up dis-
plays (HUDs) orwindshield displays (WSDs). These displays present
the information to the drivers via infotainment systems without
requiring them to look away. A recent expert workshop of Riegler
et al. [44] emphasized the extension of human (visual) perception for
safety purposes, such as highlighting of potentially critical objects, as
one of the most important goals for the future design of HUDs and
WSDs. Furthermore, these displays increase system transparency
by communicating the vehicle’s status or perception of the driving
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environment, which can lead to enhanced user experience (UX)
and acceptance, especially for highly- and fully-automated vehicles
(SAE levels 4 and 5 [46]) [6, 10, 57].

However, communicating the status or perception on the HUD
adds visual complexity for the driver, which in turn may reduce
situational awareness [8]. Visually salient elements bind attention
and make it harder for the human to parse all elements of the
driving scene. This is especially challenging in situations that are
safety-critical or time-limited. A very good example within level 3
automated vehicles is takeover requests. In these situations, after
receiving a takeover request (TOR), the driver has to shift his/her
attention from non-driving-related tasks (NDRTs) to the driving
task and quickly regain situational awareness of the driving con-
text (out-of-the-loop problem). Visually salient HUD elements may
impede that process. Consequently, communicating potentially crit-
ical objects on the HUD as a safety and UX feature in level 3 cars
involves at least three paradoxes:

P1 Transparency Paradox: During NDRTs, an intended increas-
ing transparency feature, such as highlighting critical objects on
the HUD, may distract the user from the NDRT, thus worsening
UX.

P2 Scene Parse Paradox: During a TOR, an intended safety fea-
ture, such as highlighting critical objects on the HUD, may add
complexity and distraction to the driving scenery and decrease
the driver’s situational awareness, reducing safety.

P3 Exposure Paradox: During a TOR, an intended safety fea-
ture, such as highlighting critical objects on the HUD, could
be ignored over time due to repeated “false” alarm exposure
in non-critical situations (stimulus overexposure: cf. Banner
Blindness [2] or cry-wolf-effect [17]).

The described paradoxes raise the question is necessary to display
visual warning on the HUD throughout the whole ride and what
potential impacts for safety and UX are. And to address this, how
we can reduce visual complexity and if and when displaying critical
objects is beneficial in terms of UX and safety in level 3 automated
vehicles (L3-AVs). Therefore, in this paper, we conduct a virtual
reality (VR) simulator study with an L3-AV that uses a HUD to
address all three paradoxes. First, to address the Transparency
Paradox, our system communicates warnings, either constantly on
the HUD or only during a takeover. Second, to address the Scene
Parse Paradox, we test a gaze-interaction mechanism that removes
visually salient warnings from the already seen objects to increase
visual saliency of the remaining objects (remove object salience
on gaze, ROSOG). Third, to address the Exposure Paradox, users
perform multiple TORs during a workload-inducing NDRT. We
measured participants’ driving behaviors and user experiences and
compared them to a baseline without any HUD elements. Our paper
contributes to a better understanding of HUD design for safety and
user experience in L3-AVs. Specifically, we provide an experimental
investigation of (1) the benefits of constantly displaying critical
objects on the HUD, (2) the effectiveness of the ROSOG-mechanism,
and (3) the “banner blindness” problem in an automated driving
context. Our findings can improve future HUD designs in level 3
automated cars.

2 BACKGROUND & RELATEDWORK
We relate our work to visualizing automotive head-up displays,
perception, attention, and control transitions during automated
driving.

2.1 Driving in Level 3 Automation
One of the most challenging problems for Level 3 automated cars
is the control transition between the vehicle and the human driver.

Demons of Situational Awareness. While driving, it is crucial to cap-
ture the driving environment correctly. Otherwise, critical objects
can be missed, (e.g., vehicles in the blind spot during a lane change).
Endsley [13] defines three levels of situational awareness (SA): (1)
perception of the environment, (2) understanding of the scene ob-
jects, and (3) projection of their position into the future. Endsley
further describes so-called demons of situational awareness, most
relevant in the case of automated driving: SA Demon 8 - Out-of-the-
loop syndrome. After being not fully engaged in the driving loop,
the sudden re-engagement requires a fast shift of attention and
assessment of the scene. Scene parsing becomes even more chal-
lenging when the driver is still mentally engaged in another task
(cf. [41]; Endsley: SA Demon 2 - Requisite Memory Trap). Overall,
the possibility of making a perceptual error (SA level 1) during a
TOR grows.

Take-Over Performance. To avoid perceptual errors, it is necessary
to know how long it takes drivers to evaluate the situation cor-
rectly. A meta-study of Eriksson and Stanton [14] found variances
between 1s and 23s. Gold et al. [19] showed that even after 7 sec-
onds, automation effects lead to worse driving quality (e.g., drivers
missed mirror checks). Lu et al. [32] demonstrated that drivers de-
tect surrounding cars after 7 seconds, but it takes more time for
them them to correctly perceive speed (up to 20s). Another study
of Gold et al. [20] showed that increased traffic complexity reduces
TOR performance. In sum, driving performance is strongly influ-
enced by both the environmental context of a TOR and the user’s
state and capabilities.

Take-Over Interfaces. TOR interfaces must catch the driver’s atten-
tion quickly and shift it back to the driving scene. For that purpose,
one can use auditory signals; however, a combination with visual
cues, such as warning signs [35] or ambient light bands [3], can
help catch attention and increase TOR performance. Pre-ride famil-
iarization [25] with TORs, priming drivers via mobile phones [4], or
auditory messages [53] can all help to further increase performance.

2.2 Visual Attention
One forms attention in two ways: Either through 1) goal-directed
capture or 2) stimulus-driven capture [58]. Either the driver pur-
posefully directs their attention to certain objects of interest in the
environment (top-down processing), e.g., looking for street signs
for navigation, or objects in the environment are automatically
and unintentionally brought into the focus of attention (bottom-
up processing), e.g., a traffic sign that suddenly changes colors.
The color change will often catch our attention, even if we are
not focused on the traffic light. There is evidence that under cer-
tain conditions, stimulus-driven capture outperforms goal-directed
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capture (cf. [59]), e.g., when new stimuli appear or move in the
environment (cf. [36, 59]). Thus, warnings about potential hazards
make goal-directed capture more difficult. Especially in L3-AVs,
constant visual warnings, e.g., about pedestrians and bicycles, in-
terfere with goal-directed behaviors such as a) potential NDRTs or
b) scene parsing during a TOR (cf. Endsley: SA Demon 5 - Misplaced
Salience). In response, users may start to ignore the warnings (cf.
Endsley: SA Demon 1 - Attention Tunneling).

2.3 Interacting with Head-Up Displays
While preventing off-road glances, HUDs provide drivers with rel-
evant information (e.g., current speed or navigation cues [34]).
Other HUD concepts aim to increase human perception by aug-
menting the driving scene, e.g., warning about nearby cyclists [39]
or pedestrians at night [18]. Currently, two significant develop-
ments will likely change the way we interact with automotive
HUDs: (1) Through the ongoing progress of display technologies,
such as transparent OLEDs, future HUDs will be a part of virtual
windshield displays [22] (WSDs). (2) Through ongoing vehicle au-
tomation, future vehicles may also assist NDRTs, such as watching
a movie or working on the laptop while driving (cf. [9]).

While engaged in an NDRT, even if not necessary from a techni-
cal perspective, transparency about the system’s driving behavior
leads to a better user experience (UX) during an autonomous ride,
increasing trust and acceptance [10, 31, 49]. Examples of this in-
clude highlighting detected objects in the scenery [6, 7] or warning
about potentially critical objects [57]. Thus, augmenting the traffic
scenery during autonomous driving phases can be advantageous.

Eisma et al. [12] found that augmented visual feedback leads
to subjectively easier tasks, yet it also creates misunderstandings
and leads to visual attention tunneling. In line with that, future
HUDs may help to improve scene perception by communicating
potential hazards. However, a study of Currano et al. [8] found
that visual communication about the driving scenery, including
potential hazards, increases complexity and negatively influences
SA. Another study of Kim and Gabbard [29] found that HUDs can
informative or distractive depending on the perceptual forms of
graphical elements. Thus, there seems to be a trade-off between
enhancing TOR performance by displaying SA-relevant cues and
communicating too much (salient) information (cf. Endsley: SA
Demon 6 - Complexity Creep).

A method to interact efficient, comfortably, and without paying
much attention with a HUD while being engaged in a NDRT is
gaze interaction. Eyetracting can be used as an input device [55] for
HCI and has been used in the automotive context, e.g., for selection
tasks [28, 43].

2.4 Conclusive Summary
In Level 3 automated cars, preparing drivers for TORs on the HUD
requires their attention which is a sparse resource [37]. Visually
salient HUD elements can distract attention from potentially critical
parts in a driving scene during a TOR (cf. Scene Parse Paradox). Fur-
ther, attention is a) meanwhile needed for NDRTs (cf. Transparency
Paradox) and can b) be over-requested (cf. Exposure Paradox). The
idea of this paper is to investigate if it is necessary to display vi-
sual warnings on the HUD throughout the whole ride and what

potential impacts for safety and UX are. We, therefore, test 1) the
time aspect of visual warnings and 2) the low-effort deactivation
(ROSOG interaction) of already seen warnings through gaze in
order to systematically reduce the required attention.

3 USER STUDY
We conducted a user study to examine the impact of HUD warning
presence on safety and user experience in a VR setup. In the study,
the experienced system’s HUD varies by presence (no HUD warn-
ings, during TOR only, or constant) and gaze-adaptivity (no gaze
response, deactivation on gaze-focus), leading to five conditions
(Figure 1.c) that were tested in a within-subjects study.

First, addressing the Exposure Paradox, users perform multiple
TORs during a workload-inducing NDRT. Second, addressing the
Transparency Paradox, our system communicates warnings either
constantly on the HUD or only during a takeover. Third, addressing
Scene Parse Paradox, we test a gaze-interaction mechanism that
removes visually salient warnings from the already seen objects
to increase visual saliency of the remaining objects (remove object
salience on gaze, ROSOG).

3.1 Hypotheses
Based on the evidence of previous work, we pose the following
hypotheses (cf. Section 2):
H1.1 The constant presence of visual warnings on the HUD make

the system more transparent and will improve overall user
experience during NDRTs (cf. [6, 10, 57]).

H1.2 The constant presence of visual warnings on the HUD will
help prepare for takeover by increasing situational awareness
and improving takeover performance (cf. [3]).

H1.3 The gaze-adaptivity of HUD elements reduces complexity
and distraction; thus, it helps with scene parsing by removing
visual salience from already seen objects, leading to better
takeover performance (cf. paradox 3).

In addition:
H2.1 The constant presence of visual warnings in the peripheral

field of view distracts the user during NDRT performance and
decreases user experience (contrasting H1.1, cf. paradox 1).

H2.2 The constant presence of visual warnings becomes annoying
over time and participants will start to ignore them, impeding
the takeover performance (contrasting H1.2, cf. paradox 2).

3.2 Driving Scenario
To test our hypotheses, we created a virtual reality (VR) driving
scenario in a suburban area that might occur after a phase of au-
tonomous driving on the highway. The participants experienced
sitting in a level 3 automated vehicle that drives on the right-hand
side of a two-lane road, where the maximum permitted speed is
30km/h. The road consisted of a long, straight street bordered by
sidewalks and home gardens. The car’s autonomous driving mode
was activated via a push of a button on the driving wheel. Occa-
sionally, a hazard would appear, giving the driver 5secs to react.
Hazards included a person crossing the road from behind a bus
parked on the left side, a loose tire rolling into the road from the
right side, and a ball rolling in from the left side.
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Figure 1: (a) Procedure of the experiment; (b) VR setup with a participant; (c) Experimental conditions and variation of the
HUD warnings; (d) The driver’s view, in which the NDRT is on the right side and potential hazards in the driver’s field of view
are highlighted

Simulation setup. The scenario was simulated in VR and we used
a tile generator that allowed hazard events to be configured and
intermixed on the track. Our VR setup consisted of Logitech G29
driving force (i.e., a driving wheel and standard pedals) and a pico
neo G2 VR headset with native eye-tracking 1 (cf. Figure 1.b). One of
the main features of the headset is its ability to track eye gaze, which
is a major factor in our study design. The scenario was implemented
using the Unity3D game engine, was displayed on the headset, and
received the driving wheel and pedal inputs.

HUD Design. We designed the HUD so that its only elements were
warnings. The warnings highlight any potential hazard in the scene
by surrounding it with a green box, as in Figure 1.d. The gaze
mechanism led to the behavior that, upon checking a hazard, the
warning around the hazard would disappear. To avoid the problem
of looking but not seeing, we based our determination of whether
a hazard is checked by the duration of the fixations, which should
be equal or greater than 300msec (comparable to dwell time used
in previous work [43]). So, if there are, for example, five hazards
in the scene and the participant looked at three of them, only two
would be left with the warnings around them. Therefore, based
on the 5sec time to collision (TTC), we had a sliding window that
moves with the AV, highlighting all potential hazards within a time
frame of 5sec .

1https://vr.tobii.com/integrations/pico-neo-2-eye/

Takeover Task. Upon detecting a hazardous situation, the AV com-
municates a takeover request in the form of a beeping sound that
lasted for 1 sec. We based the audio frequency on the previous work
of Gray [21]. The participants then have to intervene and take over
the system by steering the driving wheel and stepping on either
the gas or brake pedals. Once the participants intervene, the au-
tonomous driving stops, and the driver needs to execute the right
decision by braking and waiting in the case of the crossing person,
steering to the left in the case of the rolling tire, or steering to the
right in the case of the rolling ball.

Non-Driving Related Task. To ensure a high level of cognitive en-
gagement in a non-driving activity, we asked our participants to
perform a working memory span task [54]. Specifically, the partici-
pants had to verbally verify whether a mathematical operation was
true or false. Afterward, a consonant would appear for 1 second.
The participants were asked to remember these consonants until
they had to repeat them. After 5 operations (and thus 5 consonants),
the participants were asked to recall and loudly state the previously
displayed consonants. The task was displayed on a virtual tablet in
the scene. The tablet appeared to the right-hand side of the driver,
as in previous work [15] (cf. Figure 1.d).

3.3 Measurement
We applied the following measures to qualify and quantify our
hypotheses within/after the driving scenario.
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Presence in the Simulation. Since we used a virtual environment,
we asked participants about their presence in order to determine
the extent to which their virtual experience might be compared to a
real-world experience. Therefore, we used the established IGROUP
Presence Questionnaire (IPQ) [42, 50]. The questionnaire measures,
on a 7-point scale with varying answer dimensions, the general
“sense of being there.” It also measures three related subscales: 1)
Spatial Presence - the sense of being physically present in the vir-
tual environment, 2) Involvement - the attention devoted to the
virtual world and the involvement experienced, and 3) Experienced
Realism, the subjective experience of realism in the virtual environ-
ment.

Workload and NDRT Performance. In level 3 automated cars, the
driver is usually not busy handling takeovers, but is performing
NDRTs, which may be influenced by the HUD warning design. We
use a NDRT as described in Section 3.2 andmeasure the participants’
performance in terms of success (calculations, memory) and speed.
Additionally, we apply a subjective questionnaire. A standard mea-
sure used to assess the subjective task load is the NASA-TLX [24].
We used an index based on the TLX, the driving activity load in-
dex [38] (abbr.: DALI). In contrast to the NASA-TLX, the question-
naire removes the performance and physical demand dimensions
because performance can be observed through other measures, and
because modern cars are not designed to be physically demanding.
To better distinguish the mental demand dimension of the TLX,
the DALI is separated by perceptual and cognitive load, which are
visual/auditory demand and effort of attention, respectively. Fur-
ther, it adds the dimensions of interference to evaluate dual-task
performance and situational stress to evaluate stress level during
the driving task. These driving-task-specific adjustments make it
easier to identify the origins of users’ impressions, thus improv-
ing the interpretability of the results. We adjusted the interference
dimension of the DALI to our takeover scenario (asking for the
takeover interference through the NDRT, rather than the dual-task
interference). Further, we compute a global score for the DALI –
comparable to the RAW-TLX [23] score (unweighted average) for
the NASA-TLX – to assess the overall workload per condition. We
use a 100-point scale anchored from very low to very high for the
DALI.

TOR Performance. The TOR in level 3 automated cars is a safety
challenge and must be performed as efficiently and safely as possi-
ble. HUD concepts may influence situational awareness and thus
TOR performance. In our case, we measure the takeover task (cf.
Section 3.2) performance with the time from the TOR warning
until participants start to react by braking/steering (TTR). To as-
sess participants’ subsequent driving quality, we log the drivers’
applied braking/steering force and how close their path is to the
hazard. Further, utilizing the gaze data, we check if they looked at
the hazard or other potentially critical objects.

HUD Perception. We applied multiple measures to assess the partic-
ipants’ experiences and impressions of the different HUD warning
strategies. For a quick assessment of the driving experience in the
conditions, we used two scales (a positive and a negative) with a 7-
point Likert scale agreement score (very low - very high) and asked
for the reasoning in short interviews. The same Likert scale type

measures the HUD’s perception in terms of distraction, helpfulness
for task switching, situational awareness, transparency, trust, safety,
and acceptance. Further, we estimated the participants’ overall pref-
erence for a particular HUD warning strategy on a 7-point Likert
agreement scale.

3.4 Experimental Procedure
The experimental protocol was as follows (cf. Figure 1.a). First, the
experimenter welcomed the participants and verbally informed
them about the experimental procedure, which was followed by a
written description and informed consent of the participants to the
procedure and the use of data. Then, they answered a questionnaire
about their sociodemographics and relevant system experiences,
such as driving experience and familiarity with 3D technology.
Then the experiment began.

The participants took their seats and familiarized themselves
with the system. We informed the participants that the system
could fail due to insecurities. In a two-minute drive without HUDs
or side tasks and a total of 2 takeover prompts, they were able to
get used to the takeover procedure. They experienced each of the
five counterbalanced conditions in a short phase of 30 seconds. No
side task or takeover was necessary to become acquainted with the
(non)visualization. After the training phase, data recording of the
driving and gaze behavior started.

Each recorded run contained repeated potential hazard events
(HUD alerts). At intervals of 45±15 seconds, one of them requires a
takeover. Thus, there are at least 30 seconds between two takeover
requests. After each run, participants went to a PC station next
to the VR setup and filled out questionnaires regarding their sub-
jective workload (DALI [38] questionnaire) and system experience
(custom questionnaire with questions addressing UX, SA, distrac-
tion, trust, transparency, safety perception, utility, and acceptance).
They were encouraged to add positive/negative/other comments
regarding the ride (interview). We provided all questionnaires via
an online platform (www.soscisurvey.de). Completing a run (ride,
questionnaires, interview) took about 15 minutes.

After all five runs, we did a conclusive qualitative interview
with the participants about their general impressions regarding the
HUD warning design and the takeover situations. In addition, we
asked them about the strengths and weaknesses of the particular
conditions. Finally, the participants were debriefed. Overall, the
experiment took about 90 minutes.

Pilot Study. We did a pilot study with three participants (N = 3)
to test our study procedure and VR driving perception. Generally,
the participants found the simulation convincing. However, regard-
ing the fixed time from warning to potential hazard impact of 3s,
participants got used to the interval and started to react automati-
cally. Thus, we added a variation of this interval for the final study
procedure and excluded these participants from the analysis. For
the main study, based on the results obtained from participants in
the pilot study, we added a random variation to the time-to-react
(duration: 3sec – 7sec).

3.5 Analysis
To answer our research questions, we applied a mixed-linear ef-
fects model (LMEM) [1, 16] to our data – utilizing in R-script [40]
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with the package lme4 [11]. LMEMs are arguably robust to use on
Likert-data [5, 30, 48]. We controlled for the participants’ vari-
ation (random effect) while separating the effect of the condi-
tions (fixed effect) on the responses, which results in the model:
response ∼ condition+ (1|participant). In a next step, using the em-
means [45] package, we calculated the estimated marginal means
for the model before we conducted planned contrasts on the es-
timated marginal means of the conditions (i.e., we reformulated
the regression coefficients in line with our research questions, for
grouping the conditions into combined effects and for baseline com-
parisons). In other words, we applied orthogonal sum contrasts for
our independent variables/factors (warning presence, gaze adaptiv-
ity, and interaction between them). For baseline comparison, we
applied factor-wise treatment contrasts. LMEMs with planned con-
trasts provide a viable alternative to omnibus tests such as ANOVAs
(cf. Schad et al. [47]). To account for multiple comparisons of the
contrasts and the underlying t-tests, we used Šidák corrections [51].
We estimated the degrees of freedom with the Kenward-Roger pro-
cedure [27].

3.6 Sample
For the final experiment, we invited twelve persons (N = 12), 10
of whom identified as male and two as female, to the University of
Duisburg-Essen. Participants were young (M = 25.83years, SD =
3.56,MIN = 22,MAX = 32) and affiliated with the University
(9 students, 2 researchers, 1 university staff member). They had
a strong affinity for technology (ATI; 6-point Likert scale: M =
4.77, SD = 0.63) and were very experienced (7-point Likert scale)
with VR goggles (M = 5.75, SD = 1.35) and 3D apps (M = 6, SD =
1.48). Regarding their driving experience, participants held a valid
driving license for around eight years (M = 8.42, SD = 3.32). In
addition, they reported to be rather unfamiliar (7-point Likert scale)
with current ACC and lane-keeping systems (M = 3, SD = 2.09)
and used their cars relatively fewer times per year than the average
driver (≤5k: 6, >5k-10k: 2, >10k-15k: 2).

4 RESULTS
4.1 Presence in the Simulation
The IPQ results (7-point scales) show that participants recognized
the artificial driving scenery, as they reported a rather low ex-
perienced realism (M = 3.48, SD = 1.15) and medium involve-
ment (M = 4.06, SD = 1.08). Nevertheless, they felt spatially
(M = 5.42, SD = 0.75) and generally (M = 5.25, SD = 1.29) present
in the simulation.

4.2 Workload and NDRT Performance
Figure 2 shows the distribution of participants’ estimated work-
load (DALI [38]) by condition: Participants generally felt a high
attention demand, a substantial interference between tasks, and
rather stressed. They perceived the temporal and visual demand as
mediocre and the auditory demand as relatively low. Participants’
overall workload is right above the middle of the scale. For the
auditory dimension, TOR-only warnings significantly reduce the
subjective demand compared to the baseline (t(44)=-2.64, p=0.02,
effect=-28.7, CI95[-50.5,-6.8]).

Participants solved approximately 60 math tasks in each con-
dition, which translates to a speed of roughly one task every 10
seconds. We found no significant differences in participants’ perfor-
mance. The calculations and the remembered letters were mainly
correct and are also comparable across conditions (cf. Table 1).

4.3 Takeover Performance
Since the driving performance was measured for 9 subsequent
TOR situations, we added the time component (hazard) as an ad-
ditional random intercept in our LMEM (response ∼ condition +
(1|participant) + (1|hazard)).

Table 1 shows the results for NDRT and TOR performance.
Gaze-adaptive warnings seem to minimize the safety distance to
a critical level during a TOR, i.e., reduce the distance to the haz-
ard significantly compared to non-adaptive warnings (t(514)=-3.25,
p<0.01, effect=0.35, CI95[-0.56,-0.14]). Constantly present warnings
lead to a significantly higher percentage of applied brake force
compared to TOR-only warnings (t(514)=2.42, p=0.05, effect=.021,
CI95[.004,.037]). The eye-gaze data show that there is a cross-over
interaction between factors for the detection of the critical ob-
jects (t(516)=2.85, p=0.01, effect=.01, CI95[.003,.172]). With gaze-
adaptivity, constant warnings lead to better detection, while with-
out gaze-adaptivity, TOR-only warnings perform better, and the
detection efficiency of constantly present warnings decreases. The
effects are not distinguishable from the baseline. The baseline and
the TOR-only condition have the lowest TOR fail rate with N = 1.
In the other conditions, the TOR fail rate ranged from 4 (Constant,
TOR-only with gaze) to 5 (Constant with gaze).

4.4 HUD Perception
To assess HUD perception, we used a questionnaire and conducted
interviews after each condition and after all were done.

HUD-related Questionnaire. For this set of questions, we leave out
the baseline comparison because each question targets the per-
ception of the HUD warning concept. Figure 3 shows the partici-
pants’ responses to our HUD-related questions. The participants
reported a low level of distraction (Q1) throughout the trials. In
a TOR situation (Q2), users perceive the utility of the HUD con-
cepts as significantly better when warnings are tor-only rather
than constant (t(44)=4.09, p<0.001, effect=3.08, CI95[1.57,4.60]). The
Situational Awareness (Q3–Q5) support, as well as transparency
(Q6) and trust (Q7), are perceived as medium to rather high. Re-
garding safety (Q8), constant warnings were rated at approximately
the middle of the scale, whereas TOR-only warnings led to a sig-
nificant shift of that perception to a high level (t(44)=2.78, p=0.01,
effect=2.41, CI95[0.78,4.01]). Similarly, TOR-only warnings signif-
icantly increase the participants’ intention to use (Q9) the HUD
(t(44)=2.65, p=0.03, effect=2.33, CI95[0.56,4.11]) to a high level com-
pared to constant warnings.

Driving Experience. After each condition, we assessed the driving
experience on two scales: a positive and a negative 7-point Likert
scale. Figure 4.a shows the driving experience differential (positive
ratings - negative ratings). Neither positive nor negative ratings
differ between conditions, but they tend slightly towards a positive
driving experience.
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Figure 2: Results of the DALI questionnaire by dimension and HUD condition – Points and numbers show the mean response
values, Whisker and Violin plots show the distribution of responses for conditions. For easier comparison, we color-coded the
baseline green and the factor Warning Presence blue (constant) and yellow (TOR-only). Significant differences marked with
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

Table 1: NDRT performance and driving performance measures during TOR-situations by HUD condition – The “Significant
Findings”-column contains the results of the LMEM orthogonal sum contrasts labeled as “factor effects” and of the treatment
contrasts labeled as “vs baseline”. Significant differences marked with * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

HUD warning condition

Baseline (B) Constant (C0) TOR-only (T0) Constant w/gaze (C1) TOR-only w/gaze (T1) Significant Findings

M(SD) M(SD) M(SD) M(SD) M(SD) factor effects vs baseline

NDRT Performance
Completed tasks n 60.00 (12.06) 60.83 (13.46) 62.50 (16.58) 62.50 (16.03) 61.25 (13.34) - -
Correct calculations % .97 (.02) .97 (.04) .97 (.03) .98 (.02) .97 (.06) - -
Correct memorized words % .85 (.12) .86 (.10) .84 (.14) .83 (.13) .84 (.11) - -

TOR Performance
Time-to-reactms 1825.53 (606.48) 1872.77 (797.29) 1922.48 (797.62) 1964.43 (779.64) 1941.54 (882.62) - -
Min. distance to hazardm 3.12 (0.59) 3.20 (0.66) 3.37 (0.57) 3.1 (0.63) 3.12 (0.58) Gaze-adaptivity*** -
Mean braking % .06 (.05) .05 (.05) .07 (.06) .06 (.05) .07 (.06) Warning Presence* -
Mean steering % .04 (.03) .03 (.03) .03 (.02) .03 (.03) .03 (.03) - -
Looked at critical object % .96 (.19) .98 (.14) .92 (.28) .95 (.21) .99 (.10) Gaze-adaptivity x Warning Presence** -
Looked at potentially crit. obj. % .62 (.45) .62 (.38) .62 (.36) .70 (.40) .65 (.38) - -

Unresponded TORs n 1 4 1 5 4

Preference. Participants expressed their overall preference on a
7-point Likert scale after experiencing all conditions. Regarding
Gaze-adaptivity preference, without gaze-adaptivity, the ratings
significantly increase towards the middle of the scale (t(22)=2.55,
p=0.03, effect=1.67, CI95[0.23,3.11]). RegardingWarning Presence
preference, ratings are rather low for the baseline, medium for
constant warnings, and rather high for TOR-only (see Figure 4.c).
TOR-only warnings score significantly better than the baseline
(t(22)=2.74, p=0.04, effect=2.25, CI95[0.55,3.95]).

Qualitative Interviews. We conducted a qualitative content analysis
for the interviews (cf. [33]) and quantified the number of codes
by the number of mentions (i.e., N = 12). Regarding the driving
simulation, participants got used to the virtual environment after
a while (n = 8). They found the TOR scenario design repetitive

and could foresee TOR situations over time (n = 5). However, the
driving data could not support any learning effects. Regarding the
NDRT, users generally perceived the task as hard (n = 6), stressful
(n = 7), and exhausting (n = 1), as they became fatigued over time
(n = 7). On the other hand, four participants also felt stimulated by
the task or positively perceived it as exciting (n = 3) or challenging
(n = 1). The task also made them feel competent, and they felt
that it was fun (n = 3) to drive and that the TOR-assistive warning
system was not really necessary (n = 3, P2: “I don’t really need help,
I am a real driver!” )

Many participants commented that beepingwas enough to switch
their attention (n = 9) from the NDRT to the TOR task. However,
one person also found the beep sound annoying. Regarding the
TOR task, participants found the visual warnings helpful, e.g., as
they increased awareness of the hazards (P12: “[...] the HUD really
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The HUD...
(Q1) Distracts from the side task.
(Q2) Helps handling the TOR.
(Q3) Helps sensing the environment.
(Q4) Helps understanding the environment.
(Q5) Helps predicting the environment.
(Q6) Helps knowing what the system knows.
(Q7) Can be trusted.
(Q8) Gives a feeling of safety.
(Q9) Is intended to be used.

Figure 3: Results of the HUD-related questions by condition – Points and numbers show the mean response values, Whisker
and Violin plots show the distribution of responses for conditions. For easier comparison, we color-coded the baseline green
and the factorWarning Presence blue (constant) and yellow (TOR-only). Significant differences (next to question label) marked
with * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

(a) (b) (c)

Figure 4: Results of the Driving Experience and Preference
Ratings. Shape and color-coding as in previous figures, plus
factor Gaze-adaptivity in red (off) and pink (on). Significant
differences marked with * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

helps to estimate the situation when the TOR arises.” ) However, most
participants also found the TOR situation challenging (n = 7), espe-
cially without a visual aid. Some participants even commented that
they could not distinguish between the conditions with constant
and TOR-only presence of the visual warnings because of the chal-
lenging NDRT (n = 4). However, nearly all participants said that
the TOR-only warnings were less distracting and less annoying
over time (n = 11, P5: “While doing the tasks, I looked further down
on purpose not to see the distracting boxes in my peripheral vision.” )
The constant warning presence, on the other hand, increased trust
(P7: “You know what the car knows.” )

Regarding the gaze-adaptivity of the warnings, one participant
appreciated the mechanism as a compromise to information com-
plexity. However, half of the participants (n = 6) first found the

disappearing warnings confusing (e.g., P5: “Did the car identify the
person behind the bus as a hazard and now the box is deactivated or
is there another person coming?” ) or even distracting (e.g., P11: “A
disappearing box often triggers an attention switch to another box.
That is the opposite of what was intended.” )

To improve the HUD warning mechanism, participants sug-
gested highlighting occluded objects (n = 8), e.g., warning about
a person behind the bus and adjusting the visualization (n = 4).
Adjustments could be color-coding the different objects (to avoid
becoming blind to important ones) or providing more information
(hazard trajectory, velocity, etc.)

5 DISCUSSION
In the following, we discuss our data and relate it to the HUD
paradoxes, indicate directions for future research, and point out the
limitations of our study.

5.1 Warning Presence
Transparency Paradox (P1): While performing an NDRT, the HUD can
distract and impede UX. We expected the constant presence of visual
warnings on the HUD to make the system more transparent and
increase the overall user experience during NDRTs (H1.1), as well
as help prepare for takeover by increasing situational awareness.
Overall, we cannot confirm these assumptions in our experiment.
Instead, the opposite was the case. We found evidence for H2.1
in the interviews: The constant presence of visual warnings in
the peripheral field of view distracts the user during NDRT perfor-
mance and decreases user experience. Instead of having no warning
mechanism, the participants’ preference is significantly towards
presenting warnings during TOR only, whereas constant presence
is rated ambiguously. Users perceive the TOR-only presence as
significantly safer and more acceptable than the constant presence
in both the survey and the interviews: Nearly all reported that TOR-
only warnings were less distracting and less annoying over time. So
is it a bad idea to display warnings constantly in level 3 automation?
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We think not. Instead, our findings indicate that the NDRT work-
load could moderate the trade-off in the Transparency Paradox: We
chose a challenging NDRT for the experiment to make the TOR task
not too simple, because a non-demanding task would have allowed
participants to more easily parse the driving scene and handle TOR
situations. A practical approach to the Transparency Paradox would
be to adapt HUDwarnings’ presence to NDRTworkload. This could
be done by hiding the warnings or at least making them less salient
when a potentially complex activity (e.g., smartphone use) is de-
tected; conversely, it could also be done by increasing salience (e.g.,
increasing hue) when a less complex activity (e.g., looking out of
the window) is detected. Future work should compare different
NDRT load levels across warning presence to further investigate
the Transparency Paradox.

Exposure Paradox (P3): Repeated exposure to salient stimuli during
non-TOR situations leads to blindness for stimuli in TOR situations.
One hypothesis was that the constant presence of visual warnings
on the HUD would help the user to prepare for the takeover by
increasing their situational awareness, thereby improving takeover
performance (H1.2). The observed data does not support this, as
the presence was not significantly different from the baseline in the
observed TOR performance. Participants also rated the utility of
warnings only during a TOR as significantly better than constantly
presented warnings, though it was also not significantly different
from the baseline. The reason for that might be, as discussed previ-
ously: the demanding NDRT. The annoying constant warnings may
have contributed to a higher starting stress level during a TOR than
highlighting the critical objects just as the TOR scene appears. As a
result, participants may have had a lower capacity for scene parsing.
The higher initial stress would also explain the increased braking
in the constant warning conditions. The counter-hypothesis (H2.2)
was that the constant presence of visual warnings becomes annoy-
ing over time, and participants will thus ignore them, impeding
the takeover performance. We can partly confirm this hypothesis
through the interview data: Most participants perceive constant
warnings as annoying, but TOR performance is not measurably
affected, and the baseline leads for the most reliable responses
with only 1 missed TOR in total. In contrast, participants also said
they found the TOR more challenging in the absence of warnings.
Overall, beneficial effects, as in H2.1, could not be observed due
to task demand. The adverse effects of H2.2 are partly supported
by subjective perception, but are not manifested in participants’
behavior. In our case, the adverse effect may have been induced just
before the condition ended. It seems as if the anticipated trade-off
of the Exposure Paradox is there. However, future work should
test the warning presence with varying task demands to induce
the beneficial effects of constant warnings during less challenging
tasks and capture data over a longer time frame to induce more
substantial banner blindness/alarm fatigue.

5.2 Gaze-Adaptivity and Scene Complexity
Scene Parse Paradox (P2): Using visually salient warning elements
during TORs adds scene parsing complexity and distraction. We used
a gaze mechanism to reduce visual complexity. We expected that
the gaze-adaptivity of HUD elements reduces complexity and dis-
traction and thus helps with scene parsing by removing visual

salience from already seen objects, leading to better takeover per-
formance (H1.3). Here, we observed the opposite: Participants’ gaze-
interaction preference was significantly lower for warnings with a
reaction on gaze. The driving quality decreases because the minimal
distance to the hazard is reduced via gaze-adaptivity. A reason for
this could be that participants are not used to the gaze deactivation
of the visual warnings: While parsing the scenery, the interaction
might be unexpected or even undesired. This problem of unintended
gaze-interaction is often referred to as theMidas touch problem [26].
The interviews support this assumption: Half of the participants
found the gaze-interaction confusing or distracting. This seems
plausible. Removing a visually salient HUD element (color) from
the scene triggers another visually salient movement (disappearing),
thus keeping the complexity level of the scene parse. Furthermore,
and more importantly, after a HUD element disappears, focusing
on the critical object and ignoring the others that become more
salient is more demanding (stimulus-driven capture prevails over
attention-driven capture). Future work could investigate other tech-
niques to reduce complexity or test gaze-adaptivity across different
levels of scene complexity in order to better understand the Scene
Parse Paradox.

5.3 Limitations
We conducted the study in a VR driving environment. While par-
ticipants reported relatively high general and spatial presence in
the simulation, they rated the experienced realism as relatively
low and the felt involvement as medium. The VR setup may have
influenced their perceived safety, trust, and user experience. We
expect these parameters to change in a setting with higher eco-
logical validity, such as a test track. Further, our sample size was
comparably small, and the found effects of the HUD conditions had
wide confidence intervals. Therefore, some of the tendencies in our
data may reach statistical significance with an increased number of
participants (e.g., the general trend in visual data inspection that
TOR-only warnings systematically performed better than constant
warnings in terms of workload). In addition, our sample consisted
mainly of male, educated, technologically skilled persons with a
European background. Therefore, the results may vary for samples
with different properties. Despite these limitations, we see our ex-
periment as a first step towards understanding HUD paradoxes,
which certainly require more investigation.

6 CONCLUSION & FUTUREWORK
Designing warnings on HUDs in level 3 automated cars is a double-
edged sword. They can be helpful and supportive, increasing sit-
uational awareness and leading to better takeovers and system
transparency. However, they can also be annoying and distract-
ing, leading to the opposite of their design intention. This paper
investigated if it is necessary to display visual warning on the HUD
throughout the whole ride and what potential impacts for safety
and UX are. We therefore varied the warnings’ presence to system-
atically reduce and added a low-effort gaze-interaction mechanism
to further economize the required attention. We found that (1) it is
helpful for drivers to have visual support during the TOR phase, (2)
reducing scene complexity is necessary, but adaptive scene com-
plexity reduction through gaze bears the risk of distraction, and (3)
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drivers perceive constantly presented HUD warnings as annoying
and distracting after a while. These findings highlight the need
for (a) HUD adaptation based on passenger activity and potential
TORs and (b) sparse use of warning cues in future HUD designs.
We encourage others to address HUD warning presence in terms of
timing and complexity of level 3 HUDs in future work in order to
better understand the design trade-offs before implementing these
technologies.
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