Swarming in the Urban Web Space to Discover the
Optimal Region

Chandan Kumar, Uwe Gruenefeld
University of Oldenburg
firstname.lastname @uni-oldenburg.de

Abstract—People moving to a new place usually look for a suit-
able region with respect to their multiple criteria of interests. In
this work we map this problem to the migration behavior of other
species such as swarming, which is a collective behavior exhibited
by animals of similar size which aggregate together, milling about
the same region. Taking the swarm intelligence perspective, we
present a novel method to find relevant geographic region for
citizens based on Particle Swarm Optimization (PSO) framework.
Particles represent geographic regions which are moving in the
map space to find a region most relevant with respect to user’s
query. The characterization of geographic regions is based on the
multi-criteria distribution of geo-located facilities or landscape
structure from the OpenStreetMap data source. We enable end
users to visualize and evaluate the regional search process of PSO
via a Web interface. The proposed framework demonstrates high
precision and computationally efficient performance for regional
search over a vast city based dataset.

Keywords—Geographic Regions, Location-based Search,
Swarm Intelligence, Particle Swarm Optimization, Regional Search

I. INTRODUCTION

In several planning and decision making scenarios people
search for relevant geographic regions, e.g., persons moving
to a new urban area/city would like to find a region with a
similar neighborhood of geo-located facilities as their current
living environment. Current location based services can be
used to acquire information about facilities, popular landmarks
or points of interest. However characterization and search of
regions is currently not well supported by such services [10].
There have been some recent efforts to recommend interesting
regions for end users based on query by example scenarios
[9]. These approaches support the comparison of few selected
regions; however there could be situation when users want to
explore the entire urban space to discover the most suitable
region. Due to the complexity of spatial databases and huge
amount of geo-located facilities in urban areas it would be a
computationally expensive task. Hence in this work we propose
a heuristic based approach where few intelligent particles
cordially move in the map space to identify most relevant
regions. The proposed approach is derived from the popular
particle swarm optimization framework [7].

In recent years the particle swarm optimization algorithm
has emerged as a new meta-heuristic approach derived from
nature and has attracted many researchers’ interests. The
algorithm has been successfully applied to several optimization
problems and application scenarios such as Web search, infor-
mation retrieval and classification [2], [18], [4]. Nevertheless,

Wilko Heuten
OFFIS Institute of Information Technology
wilko.heuten @offis.de

Susanne Boll
University of Oldenburg
susanne.boll @uni-oldenburg.de

the use of PSO for multi-criteria search in the context of
geospatial maps is still a research area very few have tried
to explore [11], [12]. PSO searches a space by adjusting the
path of individual vectors, called particles”. The individual
particles are drawn stochastically toward the position of their
own best performance and the best performance of the swarm.
In this work we propose a framework where particles are
represented by geographic regions moving in the map space
of definite boundaries such as cities. We inherit the simple
concept of PSO algorithm in the regional search scenario,
and capitalize on the PSO qualities such as robustness to
control parameters, and computational efficiency. In addition
to conventional PSO, we propose slight variations of PSO with
congestion prevention and local exploration in the geospatial
scenario. To the best of our knowledge, the approach presented
in this paper is the first that applies PSO to assist users in locat-
ing the most suitable regions. To evaluate the efficiency of our
PSO approach, we performed experiments on huge geospatial
data for several major cities of Germany and Austria. Results
indicate that our PSO framework is able to find precise regions
based on user selected criteria in a computationally efficient
manner.

In this paper, the objective is to investigate the capability of
the PSO algorithm to locate the best geographic region based
on user selected criteria. The rest of the paper is organized
as follows. We give a brief description about regional search
and exploration in section 2. In section 3, we present the
basic idea of the PSO algorithm. In section 4, the PSO-based
regional search algorithm and its variations has been proposed.
Experimental results are given in Section 5. We discuss our
findings and observations in Section 6. Finally, Section 7
concludes the paper with possible future research directions.

II. REGIONAL SEARCH

Geographic Information Retrieval (GIR) systems [1], [8]
and various local search services' provide information access
about specific locations, facilities and geographic points of
interest. However, in various information seeking situations
users are not only interested in the specific geo entities but
the composition of urban areas and geographic regions. Users
need to specify, analyze and compare the geographic regions,
which is not feasible with the current local search systems
as their querying, ranking and presentation methods are liable
towards definite locations and entities. Users go beyond the
popular place names and location for the characterization of

Thttp://www.maps.google.com

(b) Landscape

(a) Facilities

Fig. 1: Distribution of geographic regions

their region of interest. Users could be interested in finding
appropriate regions in many decision making scenarios. A
person moving to a new city may look for an appropriate
region to live; a businessman opening a new shop/store looks
for a beneficial neighborhood, or even a tourist would want
to visit interesting regions to fulfill her sightseeing desires
in less time. In such scenarios multiple criteria of interest
become simultaneously significant, e.g., a good geographic
region for living might contain different criteria of geo-entities,
e.g., availability of shopping facilities, medical facilities, and
a good connection to public transport.

Exploration of geographic regions and their comparison
was found as one of the key desires of current local search
users [10]. It might not even be the concrete entities, but
rather the atmosphere, composition, and spatial distribution
that make up the “feeling” of a neighborhood that best capture
the intention of a user. There have been some recent efforts to
recommend interesting regions for end users based on query
by example scenarios [9]. These approaches provide a facility
based overview of geographic regions using georeferenced
entities from the OpenStreetMap or spatial Web documents.
However, suitable computational support is required to search
the entire urban space for relevant geographic regions in an
easy and effective manner.

Figure la shows an example of a geographic region se-
lected by a user on the map interface, and how the distribution
of facilities makes it an interesting living environment for the
end user. The user prefers majority of shopping, food and
drink facilities, but at the same time facilities like religion and
sports also have some significance. There could be scenarios
when a user moving to a new city would like to find a similar
region with specified categorizations to fulfill his requirements.
Figure 1b shows the distribution of a region based on the
topographical structure, i.e., the landscape arrangement of a
region based on water, greenery, forest etc. This could also
be a significant factor while characterizing a region by end
users. Hence in this work we propose a system where users
could provide regional query by example characterizations and
the algorithm would search for the most suitable geographic
region respectively.

III. PARTICLE SWARM OPTIMIZATION

The particle swarm optimization (PSO) is a probabilistic
optimization algorithm which discovers the optimal solution
using a population of particles. It is inspired by the social

behavior of biological organisms, specifically the ability of
groups of species of animals to work as a group in locating
desirable positions in a given area, e.g., bird flocking or fish
schooling [14], [7], [6]. PSO is based on the exchange of
information between individuals, which are called particles.
Each particle represents a possible solution to the optimization
task. During each iteration each particle accelerates in the
direction of its own personal best solution found so far, as
well as in the direction of the global best position discovered
so far by any of the particles in the swarm. This means that if
a particle determines a promising new solution, all the other
particles will move closer to it, exploring the region more
thoroughly in the process. Some of the attractive features of
the PSO include ease of implementation and the fact that no
gradient information is required. Hence it has been used to
solve a wide array of different optimization problems [13],
[17].

In PSO methodology, each particle p; has a set of attributes:
current velocity V;, current position X;. Each of the particles
start with randomly initialized velocities and positions. The
particle updates its velocity and position based on the equations
(equation 1, 2). The particle is evaluated by a fitness function
and the local best position of particle (Ppes;) and the global
best position of swarm (Gp,s¢) are updated based on the fitness
value of particle.

Vigr = w* V; + el x rand() * (Pest — X;) (1
+c2 x Rand() * (Gbest - XZ)

Xin=Xi+ Vi 2

- Here ¢ stands for current generation of the iteration process.
- w, cl, 2 are the momentum coefficient, recognise coefficient,
social coefficient respectively.

-rand(), Rand() are the functions that generate random
numbers between 0 and 1.

IV. REGIONAL SEARCH WITH PARTICLE SWARM
OPTIMIZATION

We propose a system inspired of swarm intelligence to
find the most appropriate region for end users. In this section
we first showcase the Web interface of our PSO framework.
Subsequently we discuss the methodological details of PSO
algorithm for the regional search.

A. Web Interface for PSO regional search

Figure 2 shows the Web interface of the proposed system.
Here users could select a particular city or multiple cities for
the regional search. In the shown example, the user intends
to find the most suitable region in Vienna with respect to a
specified region in Berlin (query region). The system allows
user to specify the region of interest via a spatial query
(polygon or circular selection) on Berlin’s map. In the example
shown in Figure 2, the user selected a circular region of interest
on the Berlin city map. Once the user has provided her area of
interest, the system triggers several particles in the city map
of Vienna. Each particle has the same diameter as the query

Fig. 2: PSO regional search

region. These particles start moving across the Vienna map to
find the best region with respect to user’s criteria. Users could
view the particles and swarm movement on the map interface,
and they could also control the speed of the swarm via the
top panel of interface. Here they could also spot the current
status (found similarity) of the search process. The swarm
would keep searching the map space until it discovers the best
region with 100% similarity or if the user terminates the search
process. In this example the user terminated the search process
when the swarm had found a region with 98% similarity. The
best region is indicated with the dark green color and its
similarity value. The transparent red circles are showing the
last positions of particles when the search process was stopped.
Users could also visualize the regional distribution of results.
Figure 3 shows the exploration of regions with the pie chart
divisions of criteria, which inherently verifies the estimated
similarity.

1) Realization Framework: We used Google Maps as a
map framework, the visualizations were built using Data
Driven Documents? (D3), a JavaScript library for visualization
design. The characterization of geographic regions is based
upon the availability of geo-located facilities. Our geospatial
database consists of a huge collection of geo-entities for var-
ious cities from Germany and Austria. These geo-entities are
extracted from the rich geospatial data source OpenStreetMap?
(OSM). All the geo-entities are classified in a pre-defined set
of categories such as shopping, education, medical facilities,
sports, etc. (the category description is a generalization of
the OpenStreetMap category listing). We also characterize
the topographic detailing of OSM such as natural landscape
(categories such as water, greenery, mountains, forests etc.) and
landuse (road, railways, industrial, commercial areas etc.). For
this purpose we developed an OSM map parser using lucene
spatial boundaries*.

B. PSO methodology

Inspired by the success of PSO as a common heuristic
technique for multi-criteria optimization and decision making
problems, we derive a PSO-based method to search for ge-
ographic regions with multiple criteria of interests and assist
the spatial decision making of end users. The goal is to find
an appropriate region in less computational time. To apply

Zhttp://www.d3js.org/
3http://www.openstreetmap.org/
“http://lucene.apache.org/core/400/spatial

E

Fig. 3: PSO results with visualizations

PSO algorithm for regional search, we mapped some concepts
of PSO to the spatial decision problem. Particle stands for
a circular region on the map as a candidate solution, which
means it is similar to the query region. For a particle p;, the
parameter position X; stands for the current location of p; on
the map, i.e., geocoordinate of the centre of circular region.
Velocity V; implies for the movement direction of particle
on the map surface. During the search process particles are
moving within the map boundaries. Inherently we translate
the city frame into a torus, i.e., if a particle is moving over
the right/top border it will enter the map from the left/down
border.

The proposed model executes a regional search process
as described below. In the initial step, a set of particles
as candidate solutions are generated. In the regional search
scenario the search space is restricted to the map boundaries;
hence the random position and velocity of initial set of particles
are set based on equation 3, 4. Then the particle updates its
velocity and position based on the equations 1, 2. The particle
is evaluated by a fitness function (equation 5) and the local best
position of the particle (Ps.s:) and the global best position of
the swarm (Gpes:) are updated based on the fitness value of
particle. Finally, if the swarm finds the optimal region, i.e.,
a particle representing 100% similarity, or the user aborts the
search process, then the algorithm outputs the best solution.
Otherwise, the algorithm would continue the iteration until a
satisfied region is found.

Xo = Vector(minLat 4+ (rand() * midLat), 3)
minLng + (Rand() * midLat)

Vo = Vector((rand() — 0.5) x (midLat/C')

; “
(Rand() — 0.5) * (midLng/C))

- Here minLat,maxLat,minlng, maxLng are the
minimum/maximum latitude and longitude within the
boundaries of the city

- midLat is the space size between minLat and
maxLat, hence midLat = maxLat — minLat, similarily
midIng = maxLng — minLng

-rand(), Rand() are the functions that generate random
numbers between 0 and 1. However we subtract it with
0.5 to generate negative values as well, so that the particle
movement in both directions is possible

- C is the constant parameter to control the movement speed
of particles, which has been set to C' = 10 in this work

Algorithm 1 describes the stepwise process of the PSO
regional search. Let S be the number of particles in the swarm,
each having a position X; in the map space and a velocity V;.
The goal is to find a solution a for which f(a) > f(b) for all b
in the search-space. f() is a fitness function explained below.

for i:=1,..5 do
Initialize the particle position X; with formula (3)
Initialize particle’s best known position Pyes; = X;
if (f(Pbest) > f(Gbest)) then

‘ Gbest - Pbest
end
Initialize the particle’s velocity V; with formula (4)
end
while optimal region found or abort do
for i:=1,..S do
Update particle’s velocity V; using formula (1)
Update particle’s position X; using formula (2)
if (f(XZ) > f(Pbest)) then

best — i
if (j?(Pbest) > f(Gbest)) then

‘ best — Pbest
end

end

end
end
Algorithm 1: PSO for regional search

1) Fitness function: The fitness of a particular particle is
computed with respect to its similarity to the user specified
query region. Each particle is a circular region on the map
characterized by the geo-located facilities. The relevance of a
particle region is based on its possibility to generate/replicate
the queried region. The index contains the region-category
matrix where each region R is represented by a category dis-
tribution (C1, Ca, .., Cy,), e.g., transportation, education, sport,
shopping, etc. Each category C; is based upon the geo-entities
which belong to category ¢. The relevance of a particular
particle region R, is based on the similarity of its categorical
distribution with respect to the query region R,. There could
be various measures to estimate the distribution similarity
[16]. However, to compute the association between geographic
regions by mean of their criteria distribution, we found the
Euclidian-Distance based distribution similarity measure [15]
most appropriate.

fitness(p) = Similarity(R,, Ry) Q)

C. PSO with Congestion Prevention

During the PSO experiment with regional search we dis-
covered that there are instances when all the particles stuck
around the same region for long durations, i.e., all particles
running around the best position in the swarm. When all
the particles have similar Gpest and Ppst, the update in the
particles velocity and positions are negligible, hence they stay
at the same location and squander the precious iterations. We
try to avoid such congestion circumstances by tracking the

particles history, so if a particle does not find a better solution
in a considerable number of iterations, its history is cleared
by resetting the speed and position to a random value using
equation 3,4. We believe such a heuristic could be vital in this
scenario since a small number of particles are searching in
the huge city boundaries. Hence the iteration of each particle
becomes a significant factor to be minimized for relevance.
Algorithm 2 shows the PSO search mechanism with congestion
preventions. The variable History is used to keep track of
the particle status, so when the particles do not find a better
position for a constant C' number of attempts, it gets initialized
to random values.

while optimal region found or abort do
for i:=1,..S do
if History > C then
Initialize X; with formula (3)
Initialize V; with formula (4)
Reset History to null
end
else
Update V; using formula (1)
Update X; using formula (2)
end
if (f(X;) > f(Ppest)) then
best — Xi
Reset History to null
if (f(Prest) > f(Gpest)) then
‘ best — L best
end

end
else

| History + +
end

end

end
Algorithm 2: PSO with congestion prevention

D. PSO with Local Exploration

In our spatial adaptation of PSO algorithm, the particles
are moving in the map space which symbolizes the real
geospatial world. In the spatial search scenarios neighborhood
has a significant impact, e.g., geo-located facilities could be
found closer to each other in the area like city centers. Hence
we propose a modification of PSO with local exploration to
benefit the particles from their neighboring region. PSO with
local search has been used in several recent approaches [17],
[11], where the particles communicate with nearest neighbor
particles. However in this work we focus specifically on finding
a better position for a particle in its restricted neighborhood
which is rather close to hill climbing algorithms for PSO [3].

In this model we search in the particle neighborhood only
if the new position of a particle is better than its previous
position. It’s the assumption that a particle has moved to a
relevant area on the map and there could be better positions
nearby. If better fitness is found in the neighborhood we
replace the current position of particle to its new neighboring
position. The local exploration is generating a constant number
of random vectors using the equation 6, which is similar to
the method being used to set the initial velocity of particles

(equation 4). However the value of parameter C' is much higher
here to move only in the close neighborhood. In iterative
steps we choose one of the vectors and add it to the position
until we do not find a better position with a superior fitness
for the particle. In the PSO details described in Algorithm
1, if the condition (f(X;) > f(Prest)) is satisfied the local
exploration process is triggered, i.e., the algorithm attempts to
find other positions near X; (which has better fitness than X;)
by stepping in the directions of vector generated by equation
6. In a fixed set of iterations if a better position L is found,
this would become the new X; as well as the Py.s; for the
subsequent search process.

Vector((rand() — 0.5) x (midLat/100)

) (6)
(Rand() — 0.5) % (midLng/100))

V. EVALUATION

In this section we describe our experiments to evaluate
the performance of proposed regional search with PSO and
its variations with congestion prevention (PSO_CP) and lo-
cal exploration (PSO_LE). The empirical parameters such
as number of particles that yields high solution were set
by experiments prior to the performance evaluation test. We
access the performance of these algorithms against the baseline
method of exhaustive complete search.

A. Complete Search

In this method we perform the regional search in the
most conventional manner. When the user searches for the
best region in a city, each possible region in the complete
city boundary becomes the candidate solution. This inherently
means that the entire map space would be devised in a grid
raster. The similarity calculation with each possible region
and query region would be estimated to discover the most
relevant region. This method can certainly yield good results
but could become a computationally expensive task based
on the dimensionality of city space. For a city like Berlin
there would be 2 500 000 possible regions (if each region
is considered to have distance of 25 meters between their
centers). However the complexity could be reduced if the
regions are mapped in far distances but that could decrease
the performance since the most appropriate region could get
omitted.

B. Benchmark and Data Description

In this work we proposed a novel problem scenario of
regional search so it is unlikely to comprise a benchmark
dataset of similar regions to be used for evaluation. Moreover it
is difficult to categorize the exact similarity of different regions
even from explicit user feedback. Hence we introduced the
feature of searching for the same region in a duplicate city.
In this scenario if the user has specified a query region R, in
city C,. The search algorithm which is supposed to find most
similar region is applied in the same city C,. If the system
could find a region Iz, with 100% similarity where R, ~ R,
i.e., system could find the same region as of query region,
this signifies the efficiency of an algorithm to find the most
appropriate region.

Figure 4 shows an example of our automatic evaluation
scenario; here the evaluation is conducted in the Austrian city
Graz. Duplicate map of the city is shown on both sides of the
interface. The system randomly generates queries on the map
(shown by dark green circular regions on the left side map)
and the PSO algorithm searches the best possible region for
each random query. The dialog box on the top describes the
stepwise search process.

The evaluation has been conducted in 14 different German
and Austrian cities. For each city 100 random queries being
generated, i.e., the system performs regional search 100 times
per city. Hence the algorithms have been compared for 1400
runs. Moreover we evaluate these algorithms for two different
kinds of regional similarity metrics. First, based on the geo-
located facilities in the regions, and secondly based on the
topography (landscape-landuse structure) of regions. We assess
the performance based on three major criteria described as
follows:

e Precision: We consider the search process a success
only if the algorithm is able to find the accurate
region with 100% similarity as of query region. So
the precision is the percentage ratio of successes with
total runs for a particular algorithm.

e Time: The proposed algorithms could find the most
relevant region in few milliseconds or it could take
several minutes. Hence to generalize the performance
we fixed the maximum time limit to 60 seconds for
all the algorithms. If the algorithm is not able to find
the best region in the maximum time limit the process
is aborted and considered as failure. We imposed this
time limit of 60 seconds for evaluation considering
that no Web users would like to wait more than a
minute for search results. We report the results with
respect to the average time taken by algorithms.

e Function calls: One of the major computational costs
of regional search is associated with the fitness func-
tion or similarity calculation among regions. During
each iteration of the search process every particle
region calls the fitness function for relevance judg-
ment. We observed that time taken for a particular
run is proportional to the number of fitness calls from
the algorithm. Hence to showcase the complexity of

Fig. 4: Evaluation with duplicate city

algorithms we state the number of fitness function
calls in addition to the time. The measured time unit
could be dependent on CPU capability and status
but the number of calls would always be the same
irrespective of machine configurations.

We offer a transparent evaluation process via a Web inter-
face. Figure 5 shows an example of our Web based evaluation
sequence, where the summary of results could be viewed with
respect to each city and queries via a grid view. Here each row
represents the result for a particular regional query. The green
entry signifies the superiority of the algorithm against the red
entries, and the blue cells signify the equality.

C. Results

Table I shows the performance comparison of proposed
algorithms for regional similarity with criteria distribution of
geo-located facilities. The results indicate that all the PSO
algorithms perform better compared to exhaustive complete
search process. The standard PSO method is able to achieve
satisfactory ~82% performance in less time compared to
complete search. The PSO with local exploration (PSO_LE)
obtained better results in even lesser time. More distinctly
PSO_CP could achieve the significant 89% results in 1.85
seconds. The number of function calls is providing the similar
indication that PSO methods needs a significantly smaller
number of fitness function calls compared to complete search,
hence the computational cost should be lower.

Table II shows the performance comparison for regional
search based on the landscape-landuse structure (topographic
similarity). Once again PSO algorithms are able to achieve
high performance in significantly less time compared to CS.
PSO_CP could achieve the significant results in 1.05 seconds
compared to 13.99 seconds taken by complete search. The
number of function calls apparently signifies the differences
in the computations efficiency of complete search and PSO
algorithms.

We observed that the performance gap between complete
search and PSO methods significantly depends on the com-
plexity and size of search space. For a small German city
like Oldenburg, complete search and PSO_CP could achieve

particle swarm optimization search imization

city round - N
success? time | best finess success?| time | best fitness
calls calls

Fig. 5: Automated online evaluation

90% and 93% respective success within 1 minute time limit
(topographic similarity). However for a big city such as Berlin
which has a vast amount of facilities distributed all over the
city, a complete search could achieve just 59% as compare to
86% success for PSO_CP. This indicates that PSO methods are
even more beneficial for regional search when the magnitude of
spatial database is larger, and could be a practical application
in the scenarios when the search space is growing from cities
to states or countries.

Algorithm | Precision | Avg time (sec) | Avg funtion calls
PSO 81.93 3.98 44082

PSO_CP 89.14 1.85 3266

PSO_LE 86.86 3.12 21278

CS 75.21 5.61 62817

TABLE I: Results with facilities based similarity metric

One of our main observations is that the PSO algorithms
are able to achieve high performance in a small time stamp.
However a complete search could achieve high accuracy given
the longer time period. Figure 6 represents a performance com-
parison graph between complete search and PSO algorithms
with variable time periods. For the time limit of 10 seconds
we notice a huge performance gap between PSO and CS; CS
would eventually catch up with the PSO performance given the
longer duration of more than a minute. However in real world
applications time is a critical factor, so rapid regional search
solution from PSO algorithms would be really appreciated.

VI. DISCUSSION

The PSO method proved to be more efficient and specif-
ically less time consuming which is of prime importance for
real time algorithms. We were able to enhance the perfor-
mances of PSO even further with proposed variations for
regional search. PSO with local exploration (PSO_LE) had
achieved good results in relatively lower time and function
calls compared to standard PSO. The PSO_CP have obtained
exceedingly high performance which has validated our earlier
hypothesis of avoiding particles to stay at the same location
for a longer duration. In the congestion prevention method
particle values are randomized if they are not able to find better
position. This eventually prevents the swarm from staying
longer on one particular region of the map. In the scenario such
as regional search this would have helped the PSO method to
explore different regions of the city more aggressively.

In addition to the enhanced performance PSO provides
better user control compared to complete search. Users could
run PSO algorithm for the desired period of time and view the
current best result as per their convenience. However this is
not possible with the complete search and the user has to wait
until all possible regions in the city space have been assessed.
Figure 7 shows the complexity of complete search process by

Algorithm Precision Avg time (sec) Avg funtion calls
PSO 90.79 7.64 47816

PSO_CP 89.29 1.05 5301

PSO_LE 85.36 6.05 9053

CS 84.79 13.99 111626

TABLE II: Results of landscape based similarity metric

o
£

60

— P50

——p50_CP
50

——Pp30_LE

Performance (%)

40

cs

20

10 T T T T T T T T 1
10 20 30 40 50 60 70 80 90

Time (sec)

Fig. 6: Performance graph with maximum time limit

means of number of function calls for a particular user query.
The system could find a region with 96% similarity, but the
whole city map is scanned with respect to different possible
region. Each red dot on the map is indicating the region for
which the similarity function had been calculated. However,
in case of PSO the system is able to find a region with 95%
similarity but the distribution of red dots are very sparse, i.e.
the system is able to achieve good results in less time and
function calls.

One of the distinctive aspects of our work is the visual-
ization and interaction with PSO to end users. There have
been several use cases of PSO proposed in popular application
scenarios such as Web search, retrieval and classification [5],
[18], [4]. But the inference has been more on the algorithmic
level, as compared to our approach where user could view and
control the PSO search process. The visuals of the particle
movements on map interface could provide the relevant indi-
cation of important areas to end users. The particle movements
could be viewed during the PSO search process; moreover we
provide the option of generating a heatmap of the particles
movement. Figure 8 shows the example heatmap of swarm
movement in the city map space. The red spots in the center
are the high density areas where the particles stayed for longer
duration; the green, blue and purple colors specify the density
in decreasing order respectively. The particles staying in an
area for longer duration is an obvious indication of higher
relevance in nearby regions.

The Web interface presented to users had the option of
searching a region with query by example scenarios, i.e., one
could select a model region on the map interface and request
the system for a region with similar characterization. If the
user is not able to describe her requirement from example
regions they could try to modify the pie-chart distribution of
categories. However the proposed framework is not limited to
such regional queries, other input methods could be simply
integrated. For example users could select a list of criteria
and weight them according to their interest, and request PSO
algorithm to discover regions with similar distribution of
criteria.

We have presented a computationally efficient way to
search for relevant regions based on facility and landscape
compositions. However, the idea could be implied in several
other scenarios like regional similarity with news or social

(b) PSO

(a) Complete Search

Fig. 7: Functional distribution on map

media, e.g., if one wants to find which region has the social
opinion (similar tweets) with respect to a event happened in
a particular region. The proposed framework could be used
for several other purposes with different data sources and
fitness function. In this work we restricted the regional search
within city boundaries but it can be easily extended to states
or countries or further. For example a successful European
industry wants to open a new plant in India and would like
to find the similar region based on the availability of natural
resources as of its current infrastructure in a European region.

VII. CONCLUSION

In this paper we proposed a swarm intelligence based
methodology to search for fitting geographic region in the map
interface. Swarm is a collection of particles which represent a
solution region and communicate with each other to find the
best region. The relevance estimation of geographic regions is
based on the multi-criteria distribution of geo located facilities
or landscape structure from OpenStreetMap data sources. We
provide an end user Web interfaces to visualize, analyze, and
evaluate the search process of PSO. We also proposed slight
variations of PSO with congestion preventions and local search
heuristic in the regional search scenario. In the evaluation
conducted with huge city database, all algorithms have shown
good performance and efficiency against exhaustive complete
search. We believe that PSO is an incredibly powerful method
to perform the multi-criteria spatial decision task of regional
search, and its applicability becomes more significant as the
search space or database becomes larger. In future we would

Fig. 8: Heatmap of swarm movement

like to integrate other useful data sources to characterize the
regions, e.g., geospatial social media. We would also like to
make the system publically available to evaluate it in real world
settings and assess the usability among end users.

ACKNOWLEDGMENT

The authors are grateful to the DFG SPP 1335 ‘Scalable

Visual Analytics’ priority program® which funds the project
UrbanExplorer.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

REFERENCES

D. Ahlers and S. Boll. Location-based Web search. In A. Scharl
and K. Tochtermann, editors, The Geospatial Web. How Geo-Browsers,
Social Software and the Web 2.0 are Shaping the Network Society.
Springer, London, 2007.

P. I. Borkar and L. H. Patil. Web information retrieval using genetic
algorithm-particle swarm optimization. International Journal of Future
Computer and Communication, 2(6):595-599, 2013.

J. Chen, Z. Qin, Y. Liu, and J. Lu. Particle swarm optimization
with local search. In Neural Networks and Brain, 2005. ICNN&B’05.
International Conference on, volume 1, pages 481-484. IEEE, 2005.

E. Diaz-Aviles, W. Nejdl, and L. Schmidt-Thieme. Swarming to rank
for information retrieval. In Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, pages 9-16. ACM, 2009.

H. Drias. Web information retrieval using particle swarm optimization
based approaches. In Web Intelligence and Intelligent Agent Technology
(WI-IAT), 2011 IEEE/WIC/ACM International Conference on, volume 1,
pages 36-39, Aug 2011.

R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm
theory. In Proceedings of the sixth international symposium on micro
machine and human science, volume 1, pages 39-43. New York, NY,
1995.

J. Kennedy, R. Eberhart, et al. Particle swarm optimization. In
Proceedings of IEEE international conference on neural networks,
volume 4, pages 1942-1948. Perth, Australia, 1995.

C. Kumar. Relevance and ranking in geographic information retrieval.
2011.

C. Kumar, W. Heuten, and S. Boll. A visual interactive system for
spatial querying and ranking of geographic regions. In S. N. Lindstaedt
and M. Granitzer, editors, I-KNOW, page 30. ACM, 2013.

C. Kumar, B. Poppinga, D. Haeuser, W. Heuten, and S. Boll. Geovisual
interfaces to find suitable urban regions for citizens: A user-centered
requirement study. In Proceedings of the 2013 ACM conference on
Pervasive and ubiquitous computing adjunct publication, pages 741—
744. ACM, 2013.

J. Lane, A. Engelbrecht, and J. Gain. Particle swarm optimization with
spatially meaningful neighbours. In Swarm Intelligence Symposium,
2008. SIS 2008. IEEE, pages 1-8. IEEE, 2008.

S. Ma, J. He, F. Liu, and Y. Yu. Land-use spatial optimization based
on pso algorithm. Geo-spatial Information Science, 14(1):54-61, 2011.

K. E. Parsopoulos and M. N. Vrahatis. Particle swarm optimization
method in multiobjective problems. In Proceedings of the 2002 ACM
symposium on Applied computing, pages 603—607. ACM, 2002.

R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization.
Swarm intelligence, 1(1):33-57, 2007.

G. Qian, S. Sural, Y. Gu, and S. Pramanik. Similarity between euclidean
and cosine angle distance for nearest neighbor queries. In Proceedings
of the 2004 ACM symposium on Applied computing, SAC *04, pages
1232-1237, New York, NY, USA, 2004. ACM.

J. Shao, Z. Huang, H. T. Shen, J. Shen, and X. Zhou. Distribution-
based similarity measures for multi-dimensional point set retrieval
applications. In Proceedings of the 16th ACM international conference
on Multimedia, MM ’08, pages 429-438, New York, NY, USA, 2008.
ACM.

Shttp://www.visualanalytics.de

[17]

[18]

Y. Sun, Z. Wang, and B. Wyk. Local and global search based pso
algorithm. In Y. Tan, Y. Shi, and H. Mo, editors, Advances in Swarm
Intelligence, volume 7928 of Lecture Notes in Computer Science, pages
129-136. Springer Berlin Heidelberg, 2013.

Z. Wang, Q. Zhang, and D. Zhang. A pso-based web document
classification algorithm. In Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, 2007. SNPD 2007.
Eighth ACIS International Conference on, volume 3, pages 659-664.
IEEE, 2007.

